Suppr超能文献

MESuSiE 可实现全基因组关联研究中因果变异的可扩展和强大的多祖系精细映射。

MESuSiE enables scalable and powerful multi-ancestry fine-mapping of causal variants in genome-wide association studies.

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.

Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA.

出版信息

Nat Genet. 2024 Jan;56(1):170-179. doi: 10.1038/s41588-023-01604-7. Epub 2024 Jan 2.

Abstract

Fine-mapping in genome-wide association studies attempts to identify causal SNPs from a set of candidate SNPs in a local genomic region of interest and is commonly performed in one genetic ancestry at a time. Here, we present multi-ancestry sum of the single effects model (MESuSiE), a probabilistic multi-ancestry fine-mapping method, to improve the accuracy and resolution of fine-mapping by leveraging association information across ancestries. MESuSiE uses summary statistics as input, accounts for the diverse linkage disequilibrium pattern observed in different ancestries, explicitly models both shared and ancestry-specific causal SNPs, and relies on a variational inference algorithm for scalable computation. We evaluated the performance of MESuSiE through comprehensive simulations and multi-ancestry fine-mapping of four lipid traits with both European and African samples. In the real data, MESuSiE improves fine-mapping resolution by 19.0% to 72.0% compared to existing approaches, is an order of magnitude faster, and captures and categorizes shared and ancestry-specific causal signals with enhanced functional enrichment.

摘要

全基因组关联研究中的精细映射试图从感兴趣的局部基因组区域中的一组候选 SNP 中识别出因果 SNP,并且通常在一次遗传背景中进行。在这里,我们提出了多祖先总和单效应模型(MESuSiE),这是一种概率性的多祖先精细映射方法,通过利用跨祖先的关联信息来提高精细映射的准确性和分辨率。MESuSiE 使用汇总统计信息作为输入,考虑到不同祖先中观察到的不同连锁不平衡模式,明确地对共享和特定于祖先的因果 SNP 进行建模,并依赖变分推理算法进行可扩展的计算。我们通过全面的模拟和对具有欧洲和非洲样本的四个脂质性状的多祖先精细映射来评估 MESuSiE 的性能。在真实数据中,与现有方法相比,MESuSiE 将精细映射分辨率提高了 19.0%至 72.0%,速度快一个数量级,并且能够捕获和分类共享和特定于祖先的因果信号,并增强功能富集。

相似文献

1
MESuSiE enables scalable and powerful multi-ancestry fine-mapping of causal variants in genome-wide association studies.
Nat Genet. 2024 Jan;56(1):170-179. doi: 10.1038/s41588-023-01604-7. Epub 2024 Jan 2.
2
Multi-ancestry fine-mapping improves precision to identify causal genes in transcriptome-wide association studies.
Am J Hum Genet. 2022 Aug 4;109(8):1388-1404. doi: 10.1016/j.ajhg.2022.07.002.
4
Generalization and fine mapping of European ancestry-based central adiposity variants in African ancestry populations.
Int J Obes (Lond). 2017 Feb;41(2):324-331. doi: 10.1038/ijo.2016.207. Epub 2016 Nov 21.
5
Improved methods for multi-trait fine mapping of pleiotropic risk loci.
Bioinformatics. 2017 Jan 15;33(2):248-255. doi: 10.1093/bioinformatics/btw615. Epub 2016 Sep 22.
6
Trans-ethnic study design approaches for fine-mapping.
Eur J Hum Genet. 2016 Aug;24(9):1330-6. doi: 10.1038/ejhg.2016.1. Epub 2016 Feb 3.
7
Integrating functional data to prioritize causal variants in statistical fine-mapping studies.
PLoS Genet. 2014 Oct 30;10(10):e1004722. doi: 10.1371/journal.pgen.1004722. eCollection 2014 Oct.
8
SparsePro: An efficient fine-mapping method integrating summary statistics and functional annotations.
PLoS Genet. 2023 Dec 28;19(12):e1011104. doi: 10.1371/journal.pgen.1011104. eCollection 2023 Dec.
9
Fine-mapping in admixed populations using CARMA-X, with applications to Latin American studies.
Am J Hum Genet. 2025 May 1;112(5):1215-1232. doi: 10.1016/j.ajhg.2025.02.020. Epub 2025 Mar 26.

引用本文的文献

2
Towards improved fine-mapping of candidate causal variants.
Nat Rev Genet. 2025 Jul 28. doi: 10.1038/s41576-025-00869-4.
4
Integrative multi-omics QTL colocalization maps regulatory architecture in aging human brain.
medRxiv. 2025 May 6:2025.04.17.25326042. doi: 10.1101/2025.04.17.25326042.
5
Methodological opportunities in genomic data analysis to advance health equity.
Nat Rev Genet. 2025 May 15. doi: 10.1038/s41576-025-00839-w.
6
Large-scale admixture mapping in the improves the characterization of cross-population phenotypic differences.
medRxiv. 2025 Apr 3:2025.04.02.25325115. doi: 10.1101/2025.04.02.25325115.
7
Improved genetic discovery and fine-mapping resolution through multivariate latent factor analysis of high-dimensional traits.
Cell Genom. 2025 May 14;5(5):100847. doi: 10.1016/j.xgen.2025.100847. Epub 2025 Apr 11.
9
Cross-ancestry genome-wide association study identifies new susceptibility genes for preeclampsia.
BMC Pregnancy Childbirth. 2025 Apr 1;25(1):379. doi: 10.1186/s12884-025-07534-y.
10
fastGxE: Powering genome-wide detection of genotype-environment interactions in biobank studies.
Res Sq. 2025 Mar 20:rs.3.rs-5952773. doi: 10.21203/rs.3.rs-5952773/v1.

本文引用的文献

2
SparsePro: An efficient fine-mapping method integrating summary statistics and functional annotations.
PLoS Genet. 2023 Dec 28;19(12):e1011104. doi: 10.1371/journal.pgen.1011104. eCollection 2023 Dec.
3
A simple new approach to variable selection in regression, with application to genetic fine mapping.
J R Stat Soc Series B Stat Methodol. 2020 Dec;82(5):1273-1300. doi: 10.1111/rssb.12388. Epub 2020 Jul 10.
4
CARMA is a new Bayesian model for fine-mapping in genome-wide association meta-analyses.
Nat Genet. 2023 Jun;55(6):1057-1065. doi: 10.1038/s41588-023-01392-0. Epub 2023 May 11.
5
FinnGen provides genetic insights from a well-phenotyped isolated population.
Nature. 2023 Jan;613(7944):508-518. doi: 10.1038/s41586-022-05473-8. Epub 2023 Jan 18.
7
SDPRX: A statistical method for cross-population prediction of complex traits.
Am J Hum Genet. 2023 Jan 5;110(1):13-22. doi: 10.1016/j.ajhg.2022.11.007. Epub 2022 Dec 1.
9
Fine-mapping from summary data with the "Sum of Single Effects" model.
PLoS Genet. 2022 Jul 19;18(7):e1010299. doi: 10.1371/journal.pgen.1010299. eCollection 2022 Jul.
10
African genetic ancestry is associated with lower frequency of PNPLA3 G allele in non-alcoholic fatty liver in an admixed population.
Ann Hepatol. 2022 Nov-Dec;27(6):100728. doi: 10.1016/j.aohep.2022.100728. Epub 2022 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验