Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.
Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA.
Nat Genet. 2024 Jan;56(1):170-179. doi: 10.1038/s41588-023-01604-7. Epub 2024 Jan 2.
Fine-mapping in genome-wide association studies attempts to identify causal SNPs from a set of candidate SNPs in a local genomic region of interest and is commonly performed in one genetic ancestry at a time. Here, we present multi-ancestry sum of the single effects model (MESuSiE), a probabilistic multi-ancestry fine-mapping method, to improve the accuracy and resolution of fine-mapping by leveraging association information across ancestries. MESuSiE uses summary statistics as input, accounts for the diverse linkage disequilibrium pattern observed in different ancestries, explicitly models both shared and ancestry-specific causal SNPs, and relies on a variational inference algorithm for scalable computation. We evaluated the performance of MESuSiE through comprehensive simulations and multi-ancestry fine-mapping of four lipid traits with both European and African samples. In the real data, MESuSiE improves fine-mapping resolution by 19.0% to 72.0% compared to existing approaches, is an order of magnitude faster, and captures and categorizes shared and ancestry-specific causal signals with enhanced functional enrichment.
全基因组关联研究中的精细映射试图从感兴趣的局部基因组区域中的一组候选 SNP 中识别出因果 SNP,并且通常在一次遗传背景中进行。在这里,我们提出了多祖先总和单效应模型(MESuSiE),这是一种概率性的多祖先精细映射方法,通过利用跨祖先的关联信息来提高精细映射的准确性和分辨率。MESuSiE 使用汇总统计信息作为输入,考虑到不同祖先中观察到的不同连锁不平衡模式,明确地对共享和特定于祖先的因果 SNP 进行建模,并依赖变分推理算法进行可扩展的计算。我们通过全面的模拟和对具有欧洲和非洲样本的四个脂质性状的多祖先精细映射来评估 MESuSiE 的性能。在真实数据中,与现有方法相比,MESuSiE 将精细映射分辨率提高了 19.0%至 72.0%,速度快一个数量级,并且能够捕获和分类共享和特定于祖先的因果信号,并增强功能富集。