Center for Pharmacometrics & Systems Pharmacology, College of Pharmacy, University of Florida, Florida.
Gilead Sciences, Foster City, California, USA.
Eur J Pharm Sci. 2024 Mar 1;194:106689. doi: 10.1016/j.ejps.2023.106689. Epub 2024 Jan 1.
Oxycodone is one of the most commonly used opioids to treat moderate to severe pain. It is metabolized mainly by CYP3A4 and CYP2D6, while only a small fraction of the dose is excreted unchanged into the urine. Oxymorphone, the metabolite primarily formed by CYP2D6, has a 40- to 60-fold higher mu-opioid receptor affinity than the parent compound. While CYP2D6-mediated gene-drug-interactions (GDIs) and drug-drug interactions (DDIs) are well-studied, they only account for a portion of the variability in oxycodone and oxymorphone exposure. The combined impact of CYP2D6-mediated GDIs and DDIs, CYP3A4-mediated DDIs, and UGT2B7 GDIs is not fully understood yet and hard to study in head-to-head clinical trials given the relatively large number of scenarios. Instead, we propose the use of a physiologically-based pharmacokinetic model that integrates available information on oxycodone's metabolism to characterize and predict the impact of DDIs and GDIs on the exposure of oxycodone and its major, pharmacologically-active metabolite oxymorphone. To this end, we first developed and verified a PBPK model for oxycodone and its metabolites using published clinical data. The verified model was then applied to determine the dose-exposure relationship of oxycodone and oxymorphone stratified by CYP2D6 and UGT2B7 phenotypes respectively, and administered perpetrators of CYP-based drug interactions. Our simulations demonstrate that the combination of CYP2D6 UM and a UGT2B7Y (268) mutation may lead to a 2.3-fold increase in oxymorphone exposure compared to individuals who are phenotyped as CYP2D6 NM / UGT2B7 NM. The extent of oxymorphone exposure increases up to 3.2-fold in individuals concurrently taking CYP3A4 inhibitors, such as ketoconazole. Inhibition of the CYP3A4 pathway results in a relative increase in the partial metabolic clearance of oxycodone to oxymorphone. Oxymorphone is impacted to a higher extent by GDIs and DDIs than oxycodone. We predict oxymorphone exposure to be highest in CYP2D6 UMs/UGT2B7 PMs in the presence of ketoconazole (strong CYP3A4 index inhibitor) and lowest in CYP2D6 PMs/UGT2B7 NMs in the presence of rifampicin (strong CYP3A4 index inducer) covering a 55-fold exposure range.
羟考酮是一种常用于治疗中重度疼痛的阿片类药物。它主要通过 CYP3A4 和 CYP2D6 代谢,而只有一小部分剂量不变地排泄到尿液中。羟吗啡酮,主要由 CYP2D6 形成的代谢物,与母体化合物相比,对μ-阿片受体的亲和力高 40-60 倍。虽然 CYP2D6 介导的基因-药物相互作用(GDIs)和药物-药物相互作用(DDIs)已经得到了很好的研究,但它们仅占羟考酮和羟吗啡酮暴露变异性的一部分。CYP2D6 介导的 GDIs 和 DDI、CYP3A4 介导的 DDI 以及 UGT2B7 GDIs 的综合影响尚未完全了解,并且由于相对较多的情况,很难在头对头临床试验中进行研究。相反,我们建议使用一种基于生理学的药代动力学模型,该模型整合了羟考酮代谢的可用信息,以表征和预测 DDIs 和 GDIs 对羟考酮及其主要的、具有药理活性的代谢物羟吗啡酮暴露的影响。为此,我们首先使用已发表的临床数据开发并验证了羟考酮及其代谢物的 PBPK 模型。然后,将验证后的模型应用于分别按 CYP2D6 和 UGT2B7 表型分层的羟考酮和羟吗啡酮的剂量-暴露关系,并对 CYP 药物相互作用的诱发剂进行了研究。我们的模拟表明,CYP2D6 UM 和 UGT2B7Y(268)突变的组合可能导致与表型为 CYP2D6 NM/UGT2B7 NM 的个体相比,羟吗啡酮暴露增加 2.3 倍。同时服用 CYP3A4 抑制剂(如酮康唑)的个体中,羟吗啡酮的暴露程度增加了 3.2 倍。CYP3A4 途径的抑制导致羟考酮向羟吗啡酮的部分代谢清除率相对增加。与羟考酮相比,羟吗啡酮受到 GDIs 和 DDI 的影响更大。我们预测,在酮康唑(强 CYP3A4 指数抑制剂)存在的情况下,羟考酮的暴露量最高,在 CYP2D6 PM/UGT2B7 NM 的情况下最低,在利福平(强 CYP3A4 指数诱导剂)存在的情况下,暴露量范围为 55 倍。