Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, 245-0066, Japan.
School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama, 703-8516, Japan.
Arch Toxicol. 2024 Mar;98(3):837-848. doi: 10.1007/s00204-023-03659-1. Epub 2024 Jan 5.
Tetrabromobisphenol A (TBBPA) and tetrachlorobisphenol A (TCBPA), bisphenol A (BPA) analogs, are endocrine-disrupting chemicals predominantly metabolized into glucuronides by UDP-glucuronosyltransferase (UGT) enzymes in humans and rats. In the present study, TBBPA and TCBPA glucuronidation by the liver microsomes of humans and laboratory animals (monkeys, dogs, minipigs, rats, mice, and hamsters) and recombinant human hepatic UGTs (10 isoforms) were examined. TBBPA glucuronidation by the liver microsomes followed the Michaelis-Menten model kinetics in humans, rats, and hamsters and the biphasic model in monkeys, dogs, minipigs, and mice. The CL values based on the Eadie-Hofstee plots were mice (147) > monkeys (122) > minipigs (108) > humans (100) and rats (98) > dogs (81) > hamsters (47). TCBPA glucuronidation kinetics by the liver microsomes followed the biphasic model in all species except for minipigs, which followed the Michaelis-Menten model. The CL values were monkeys (172) > rats (151) > mice (134) > minipigs (104), dogs (102), and humans (100) > hamsters (88). Among recombinant human UGTs examined, UGT1A1 and UGT1A9 showed higher TBBPA and TCBPA glucuronidation abilities. The kinetics of TBBPA and TCBPA glucuronidation followed the substrate inhibition model in UGT1A1 and the Michaelis-Menten model in UGT1A9. The CL values were UGT1A1 (100) > UGT1A9 (42) for TBBPA glucuronidation and UGT1A1 (100) > UGT1A9 (53) for TCBPA glucuronidation, and the activities at high substrate concentration ranges were higher in UGT1A9 than in UGT1A1 for both TBBPA and TCBPA. These results suggest that the glucuronidation abilities toward TBBPA and TCBPA in the liver differ extensively across species, and that UGT1A1 and UGT1A9 expressed in the liver mainly contribute to the metabolism and detoxification of TBBPA and TCBPA in humans.
四溴双酚 A(TBBPA)和四氯双酚 A(TCBPA)是双酚 A(BPA)的类似物,主要在人和大鼠中通过 UDP-葡糖醛酸基转移酶(UGT)酶代谢为葡糖苷酸。在本研究中,研究了人及实验动物(猴、犬、小型猪、大鼠、小鼠和仓鼠)的肝微粒体和重组人肝 UGT(10 种同工酶)对 TBBPA 和 TCBPA 的葡萄糖醛酸化作用。人、大鼠和仓鼠的 TBBPA 葡萄糖醛酸化作用遵循米氏-门坦动力学模型,而猴、犬、小型猪和小鼠则遵循双相模型。根据 Eadie-Hofstee 图计算的 CL 值为小鼠(147)>猴(122)>小型猪(108)>人(100)和大鼠(98)>犬(81)>仓鼠(47)。除小型猪外,所有物种的 TCBPA 肝微粒体葡萄糖醛酸化动力学均遵循双相模型,而小型猪则遵循米氏-门坦模型。CL 值为猴(172)>大鼠(151)>小鼠(134)>小型猪(104)、犬(102)和人(100)>仓鼠(88)。在所研究的重组人 UGT 中,UGT1A1 和 UGT1A9 显示出更高的 TBBPA 和 TCBPA 葡萄糖醛酸化能力。TBBPA 和 TCBPA 葡萄糖醛酸化的动力学在 UGT1A1 中遵循底物抑制模型,在 UGT1A9 中遵循米氏-门坦模型。CL 值为 UGT1A1(100)>UGT1A9(42)用于 TBBPA 葡萄糖醛酸化,UGT1A1(100)>UGT1A9(53)用于 TCBPA 葡萄糖醛酸化,在高底物浓度范围内的活性在 UGT1A9 中高于 UGT1A1 用于 TBBPA 和 TCBPA。这些结果表明,TBBPA 和 TCBPA 在不同物种的肝脏中的葡萄糖醛酸化能力差异很大,并且在肝脏中表达的 UGT1A1 和 UGT1A9 主要有助于人类 TBBPA 和 TCBPA 的代谢和解毒。