Suppr超能文献

自动化功能成像和心肌做功在评估阻塞性睡眠呼吸暂停儿童心功能中的作用。

Role of automated functional imaging and myocardial work in assessment of cardiac function in children with obstructive sleep apnea.

机构信息

Department of Pediatric Cardiology, Children's Hospital of Soochow University, 92 Zhongnan Road, SuzhouJiangsu, 215003, China.

Department of Pediatrics, The First People's Hospital of Kunshan, 566 East Qian-Jin Road, KunshanJiangsu, 215300, China.

出版信息

Int J Cardiovasc Imaging. 2024 Mar;40(3):601-611. doi: 10.1007/s10554-023-03030-6. Epub 2024 Jan 6.

Abstract

BACKGROUND

Early identification of abnormal left ventricular function in children with obstructive sleep apnea (OSA) is difficult using conventional echocardiographic indices and commonly used clinical markers of myocardial damage. We sought to investigate the value of automatic function imaging and myocardial work parameters in predicting early cardiac impairment in children having OSA with preserved left heart function and thereby identifying an optimal index for assessment.

PATIENTS AND METHODS

Fifty-two children who presented with symptoms of nocturnal sleep snoring and open-mouth breathing and 34 healthy controls were enrolled in this study. Clinical characteristics and conventional echocardiographic data were collected, and image analysis was performed using two-dimensional speckle-tracking echocardiography to obtain left ventricular global longitudinal strain (GLS), post-systolic index, peak strain dispersion, global work index (GWI), global constructive work (GCW), global wasted work, and global work efficiency.

RESULTS

Children with OSA had significantly lower GLS, GWI, and GCW than those without (P < 0.05). Additionally, GWI (β = -32.87, 95% CI: -53.47 to -12.27), and GCW (β = -35.09, 95% CI: -55.35 to -14.84) were found to correlate with the disease severity in the multiple linear regression mode, with worsening values observed as the severity of the disease increased. ROC curve analysis revealed that GCW was the best predictor of myocardial dysfunction, with an AUC of 0.809 (P < 0.001), and the best cutoff point for diagnosing myocardial damage in children with OSA was 1965.5 mmHg%, with a sensitivity of 92.5% and a specificity of 58.7%.

CONCLUSIONS

GLS, GWI, and GCW were identified as predictors of myocardial dysfunction in children with OSA, with GCW being the best predictor.

摘要

背景

使用传统超声心动图指标和常用心肌损伤临床标志物,难以早期识别阻塞性睡眠呼吸暂停(OSA)患儿的左心室功能异常。我们旨在研究自动功能成像和心肌做功参数在预测左心功能正常的 OSA 患儿早期心脏损伤中的价值,从而确定评估的最佳指标。

患者和方法

本研究纳入了 52 名有夜间睡眠打鼾和张口呼吸症状的患儿和 34 名健康对照者。收集了临床特征和常规超声心动图数据,并使用二维斑点追踪超声心动图进行图像分析,以获得左心室整体纵向应变(GLS)、收缩后指数、应变离散峰值、整体做功指数(GWI)、整体构建功(GCW)、整体浪费功和整体工作效率。

结果

OSA 患儿的 GLS、GWI 和 GCW 明显低于无 OSA 患儿(P < 0.05)。此外,在多元线性回归模型中,GWI(β = -32.87,95%CI:-53.47 至-12.27)和 GCW(β = -35.09,95%CI:-55.35 至-14.84)与疾病严重程度相关,随着疾病严重程度的增加,值逐渐降低。ROC 曲线分析显示,GCW 是诊断 OSA 患儿心肌功能障碍的最佳预测指标,AUC 为 0.809(P < 0.001),GCW 诊断 OSA 患儿心肌损伤的最佳截断点为 1965.5mmHg%,敏感性为 92.5%,特异性为 58.7%。

结论

GLS、GWI 和 GCW 被确定为 OSA 患儿心肌功能障碍的预测指标,GCW 是最佳预测指标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验