Gilis Jeroen, Perin Laura, Malfait Milan, Van den Berge Koen, Takele Assefa Alemu, Verbist Bie, Risso Davide, Clement Lieven
These authors contributed equally.
Applied Mathematics, Computer science and Statistics, Ghent University, Ghent, 9000, Belgium.
bioRxiv. 2023 Dec 19:2023.12.17.572043. doi: 10.1101/2023.12.17.572043.
In single-cell transcriptomics, differential gene expression (DE) analyses typically focus on testing differences in the average expression of genes between cell types or conditions of interest. Single-cell transcriptomics, however, also has the promise to prioritise genes for which the expression differ in other aspects of the distribution. Here we develop a workflow for assessing differential detection (DD), which tests for differences in the average fraction of samples or cells in which a gene is detected. After benchmarking eight different DD data analysis strategies, we provide a unified workflow for jointly assessing DE and DD. Using simulations and two case studies, we show that DE and DD analysis provide complementary information, both in terms of the individual genes they report and in the functional interpretation of those genes.
在单细胞转录组学中,差异基因表达(DE)分析通常侧重于测试感兴趣的细胞类型或条件之间基因平均表达的差异。然而,单细胞转录组学也有望对那些在分布的其他方面表达存在差异的基因进行优先级排序。在这里,我们开发了一种用于评估差异检测(DD)的工作流程,该流程测试检测到某个基因的样本或细胞的平均比例差异。在对八种不同的DD数据分析策略进行基准测试后,我们提供了一个联合评估DE和DD的统一工作流程。通过模拟和两个案例研究,我们表明DE和DD分析在它们报告的单个基因以及这些基因的功能解释方面都提供了互补信息。