Suppr超能文献

患者来源的黑色素瘤和肾细胞癌的高通量3D药物筛选方案

Protocol for high throughput 3D drug screening of patient derived melanoma and renal cell carcinoma.

作者信息

Ortiz Jordan Luis M, Vega Virneliz Fernández, Shumate Justin, Peles Adam, Zeiger Jordan, Scampavia Louis, Spicer Timothy P

机构信息

High-Throughput Molecular Screening Center, Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, 130 Scripps Way #1A1, Jupiter, FL 33458, USA.

High-Throughput Molecular Screening Center, Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, 130 Scripps Way #1A1, Jupiter, FL 33458, USA.

出版信息

SLAS Discov. 2024 Apr;29(3):100141. doi: 10.1016/j.slasd.2024.01.002. Epub 2024 Jan 11.

Abstract

High Throughput Screening (HTS) with 3D cell models is possible thanks to the recent progress and development in 3D cell culture technologies. Results from multiple studies have demonstrated different drug responses between 2D and 3D cell culture. It is now widely accepted that 3D cell models more accurately represent the physiologic conditions of tumors over 2D cell models. However, there is still a need for more accurate tests that are scalable and better imitate the complex conditions in living tissues. Here, we describe ultrahigh throughput 3D methods of drug response profiling in patient derived primary tumors including melanoma as well as renal cell carcinoma that were tested against the NCI oncologic set of FDA approved drugs. We also tested their autologous patient derived cancer associated fibroblasts, varied the in-vitro conditions using matrix vs matrix free methods and completed this in both 3D vs 2D rendered cancer cells. The result indicates a heterologous response to the drugs based on their genetic background, but not on their maintenance condition. Here, we present the methods and supporting results of the HTS efforts using these 3D of organoids derived from patients. This demonstrated the possibility of using patient derived 3D cells for HTS and expands on our screening capabilities for testing other types of cancer using clinically approved anti-cancer agents to find drugs for potential off label use.

摘要

由于三维细胞培养技术最近的进展和发展,使用三维细胞模型进行高通量筛选(HTS)成为可能。多项研究结果表明,二维和三维细胞培养之间存在不同的药物反应。现在人们普遍认为,与二维细胞模型相比,三维细胞模型能更准确地代表肿瘤的生理状况。然而,仍然需要更准确的、可扩展的测试,以更好地模拟活组织中的复杂情况。在此,我们描述了针对患者来源的原发性肿瘤(包括黑色素瘤和肾细胞癌)进行药物反应谱分析的超高通量三维方法,这些肿瘤针对美国国立癌症研究所(NCI)的一组FDA批准的肿瘤药物进行了测试。我们还测试了它们源自患者的自体癌症相关成纤维细胞,使用有基质与无基质方法改变体外条件,并在三维和二维培养的癌细胞中均完成了此操作。结果表明,基于其基因背景而非维持条件,对药物存在异源反应。在此,我们展示了使用源自患者的这些类器官三维模型进行高通量筛选的方法及支持结果。这证明了使用患者来源的三维细胞进行高通量筛选的可能性,并扩展了我们使用临床批准的抗癌药物测试其他类型癌症以寻找潜在非标签用途药物的筛选能力。

相似文献

1
Protocol for high throughput 3D drug screening of patient derived melanoma and renal cell carcinoma.
SLAS Discov. 2024 Apr;29(3):100141. doi: 10.1016/j.slasd.2024.01.002. Epub 2024 Jan 11.
3
Systemic treatments for metastatic cutaneous melanoma.
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.
5
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.
6
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Jan 9;1(1):CD011535. doi: 10.1002/14651858.CD011535.pub3.
7
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
8
Nivolumab for adults with Hodgkin's lymphoma (a rapid review using the software RobotReviewer).
Cochrane Database Syst Rev. 2018 Jul 12;7(7):CD012556. doi: 10.1002/14651858.CD012556.pub2.
9
Establishment of a patient-derived 3D in vitro meningioma model in xeno-free hydrogel for clinical applications.
Acta Neuropathol Commun. 2025 Apr 24;13(1):81. doi: 10.1186/s40478-025-02008-w.
10
First-line therapy for adults with advanced renal cell carcinoma: a systematic review and network meta-analysis.
Cochrane Database Syst Rev. 2023 May 4;5(5):CD013798. doi: 10.1002/14651858.CD013798.pub2.

引用本文的文献

1
Graph-Based 3-Dimensional Spatial Gene Neighborhood Networks of Single Cells in Gels and Tissues.
BME Front. 2025 Mar 13;6:0110. doi: 10.34133/bmef.0110. eCollection 2025.
2
Organoids as Sophisticated Tools for Renal Cancer Research: Extensive Applications and Promising Prospects.
Cell Mol Bioeng. 2024 Oct 15;17(6):527-548. doi: 10.1007/s12195-024-00825-y. eCollection 2024 Dec.
3
A systematic review on the culture methods and applications of 3D tumoroids for cancer research and personalized medicine.
Cell Oncol (Dordr). 2025 Feb;48(1):1-26. doi: 10.1007/s13402-024-00960-8. Epub 2024 May 28.

本文引用的文献

1
In Vitro and In Vivo Drug-Response Profiling Using Patient-Derived High-Grade Glioma.
Cancers (Basel). 2023 Jun 22;15(13):3289. doi: 10.3390/cancers15133289.
3
Protocol for 3D screening of lung cancer spheroids using natural products.
SLAS Discov. 2023 Mar;28(2):20-28. doi: 10.1016/j.slasd.2023.01.005. Epub 2023 Jan 18.
4
Cancer statistics, 2023.
CA Cancer J Clin. 2023 Jan;73(1):17-48. doi: 10.3322/caac.21763.
5
What can we learn from kidney organoids?
Kidney Int. 2022 Nov;102(5):1013-1029. doi: 10.1016/j.kint.2022.06.032. Epub 2022 Aug 13.
6
Patient-derived renal cell carcinoma organoids for personalized cancer therapy.
Clin Transl Med. 2022 Jul;12(7):e970. doi: 10.1002/ctm2.970.
7
Lead identification using 3D models of pancreatic cancer.
SLAS Discov. 2022 Apr;27(3):159-166. doi: 10.1016/j.slasd.2022.03.002. Epub 2022 Mar 17.
10
Development of a miniaturized 3D organoid culture platform for ultra-high-throughput screening.
J Mol Cell Biol. 2020 Aug 1;12(8):630-643. doi: 10.1093/jmcb/mjaa036.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验