Suppr超能文献

电子锁调控纳米酶的催化选择性。

Electron Lock Manipulates the Catalytic Selectivity of Nanozyme.

机构信息

Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, People's Republic of China.

Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, People's Republic of China.

出版信息

ACS Nano. 2024 Jan 30;18(4):3814-3825. doi: 10.1021/acsnano.3c12201. Epub 2024 Jan 17.

Abstract

Nanomaterials with enzyme-mimicking functions, termed nanozymes, offer attractive opportunities for biocatalysis and biomedicine. However, manipulating nanozyme selectivity poses an insurmountable hurdle. Here, we propose the concept of an energy-governed electron lock that controls electron transfer between nanozyme and substrates to achieve selectivity manipulation of enzyme-like catalysis. An electron lock can be constructed and opened, via modulating the nanozyme's electron energy to match the energy barrier of enzymatic reactions. An iron-doped carbon dot (FeCD) nanozyme with easy-to-regulate electron energy is selected as a proof of concept. Through regulating the conduction band which dominates electron energy, activatable oxidase and selective peroxidase (POD) with substrate affinity 123-fold higher than that of natural horseradish peroxidase (HRP) is achieved. Furthermore, while maintaining selectivity, FeCDs exhibit catalytic kinetics comparable to that of HRP upon transforming photons into electrons. Superior selectivity, efficient catalysis, and undetectable biotoxicity energize FeCDs as potent targeted drugs on antibiotic-resistant bacterial abscesses. An electron lock provides a robust strategy to manipulate selectivity toward advanced nanozymes.

摘要

具有酶模拟功能的纳米材料,称为纳米酶,为生物催化和生物医学提供了有吸引力的机会。然而,操纵纳米酶的选择性是一个不可逾越的障碍。在这里,我们提出了一种能量控制的电子锁的概念,该电子锁可以控制纳米酶和底物之间的电子转移,从而实现对类酶催化的选择性操纵。通过调节纳米酶的电子能量来匹配酶反应的能垒,可以构建和打开电子锁。选择具有易于调节电子能量的铁掺杂碳点(FeCD)纳米酶作为概念验证。通过调节主导电子能量的导带,实现了具有比天然辣根过氧化物酶(HRP)高 123 倍的底物亲和力的可激活氧化酶和选择性过氧化物酶(POD)。此外,FeCD 在将光子转化为电子时,表现出与 HRP 相当的催化动力学,同时保持选择性。优异的选择性、高效的催化和不可检测的生物毒性使 FeCD 成为对抗生素耐药性脓肿的有效靶向药物。电子锁为先进的纳米酶提供了一种强大的选择性操纵策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验