Suppr超能文献

分支杆菌细胞外囊泡增加分枝杆菌对克拉霉素的体外耐药性。

Mycobacterium abscessus extracellular vesicles increase mycobacterial resistance to clarithromycin in vitro.

机构信息

Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA.

Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.

出版信息

Proteomics. 2024 May;24(10):e2300332. doi: 10.1002/pmic.202300332. Epub 2024 Jan 18.

Abstract

Nontuberculous Mycobacteria (NTM) are a group of emerging bacterial pathogens that have been identified in cystic fibrosis (CF) patients with microbial lung infections. The treatment of NTM infection in CF patients is challenging due to the natural resistance of NTM species to many antibiotics. Mycobacterium abscessus is one of the most common NTM species found in the airways of CF patients. In this study, we characterized the extracellular vesicles (EVs) released by drug-sensitive M. abscessus untreated or treated with clarithromycin (CLR), one of the frontline anti-NTM drugs. Our data show that exposure to CLR increases mycobacterial protein trafficking into EVs as well as the secretion of EVs in culture. Additionally, EVs released by CLR-treated M. abscessus increase M. abscessus resistance to CLR when compared to EVs from untreated M. abscessus. Proteomic analysis further indicates that EVs released by CLR-treated M. abscessus carry an increased level of 50S ribosomal subunits, the target of CLR. Taken together, our results suggest that EVs play an important role in M. abscessus resistance to CLR treatment.

摘要

非结核分枝杆菌(NTM)是一组新兴的细菌病原体,已在患有肺部微生物感染的囊性纤维化(CF)患者中被发现。由于 NTM 物种对许多抗生素具有天然耐药性,因此 CF 患者的 NTM 感染治疗具有挑战性。脓肿分枝杆菌是 CF 患者气道中最常见的 NTM 物种之一。在这项研究中,我们对未用克拉霉素(CLR)治疗或用 CLR 治疗(一线抗 NTM 药物之一)的药敏性脓肿分枝杆菌释放的细胞外囊泡(EVs)进行了表征。我们的数据表明,与未经处理的 M. abscessus 相比,CLR 暴露会增加分枝杆菌蛋白向 EV 中的转运以及培养物中 EV 的分泌。此外,与未经处理的 M. abscessus 释放的 EV 相比,用 CLR 处理的 M. abscessus 释放的 EV 可增加 M. abscessus 对 CLR 的耐药性。蛋白质组学分析进一步表明,CLR 处理的 M. abscessus 释放的 EV 携带增加水平的 50S 核糖体亚基,这是 CLR 的靶标。总之,我们的结果表明 EVs 在 M. abscessus 对 CLR 治疗的耐药性中起重要作用。

相似文献

1
Mycobacterium abscessus extracellular vesicles increase mycobacterial resistance to clarithromycin in vitro.
Proteomics. 2024 May;24(10):e2300332. doi: 10.1002/pmic.202300332. Epub 2024 Jan 18.
4
8
Macrolide treatment for Mycobacterium abscessus and Mycobacterium massiliense infection and inducible resistance.
Am J Respir Crit Care Med. 2012 Nov 1;186(9):917-25. doi: 10.1164/rccm.201111-2005OC. Epub 2012 Aug 9.
9
Resistance against DNA Gyrase Inhibitor SPR719 in Mycobacterium avium and Mycobacterium abscessus.
Microbiol Spectr. 2022 Feb 23;10(1):e0132121. doi: 10.1128/spectrum.01321-21. Epub 2022 Jan 12.
10
Biofilm prevention concentration of clarithromycin against clinically relevant species of nontuberculous mycobacteria.
Rev Esp Quimioter. 2024 Jun;37(3):266-269. doi: 10.37201/req/014.2024. Epub 2024 Apr 11.

引用本文的文献

1
Functional (re)annotation of proteome using integrative sequence and AI-based structural approaches.
Curr Res Struct Biol. 2025 Aug 6;10:100172. doi: 10.1016/j.crstbi.2025.100172. eCollection 2025 Dec.
2
N-Acetylcysteine as a Host-Directed Therapy Against Clarithromycin-Resistant .
Pathogens. 2025 Mar 21;14(4):302. doi: 10.3390/pathogens14040302.
3
Microvesicles Derived from Human Bronchial Epithelial Cells Regulate Macrophage Activation During Infection.
J Proteome Res. 2025 May 2;24(5):2291-2301. doi: 10.1021/acs.jproteome.4c00827. Epub 2025 Mar 28.
4
Host Long Noncoding RNAs as Key Players in Mycobacteria-Host Interactions.
Microorganisms. 2024 Dec 21;12(12):2656. doi: 10.3390/microorganisms12122656.
5
Toward better cures for lung disease.
Clin Microbiol Rev. 2024 Dec 10;37(4):e0008023. doi: 10.1128/cmr.00080-23. Epub 2024 Oct 3.
6
Characterization of Exosomes Released from Mycobacterium abscessus-Infected Macrophages.
Proteomics. 2025 Feb;25(3):e202400181. doi: 10.1002/pmic.202400181. Epub 2024 Sep 16.

本文引用的文献

1
Dynamin-like proteins mediate extracellular vesicle secretion in Mycobacterium tuberculosis.
EMBO Rep. 2023 Jun 5;24(6):e55593. doi: 10.15252/embr.202255593. Epub 2023 Apr 20.
2
Extracellular Vesicles in Mycobacteria and Tuberculosis.
Front Cell Infect Microbiol. 2022 May 27;12:912831. doi: 10.3389/fcimb.2022.912831. eCollection 2022.
3
The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences.
Nucleic Acids Res. 2022 Jan 7;50(D1):D543-D552. doi: 10.1093/nar/gkab1038.
4
Outer membrane vesicles (OMVs) enabled bio-applications: A critical review.
Biotechnol Bioeng. 2022 Jan;119(1):34-47. doi: 10.1002/bit.27965. Epub 2021 Nov 6.
5
Role of inflammation and oxidative stress in tissue damage associated with cystic fibrosis: CAPE as a future therapeutic strategy.
Mol Cell Biochem. 2022 Jan;477(1):39-51. doi: 10.1007/s11010-021-04263-6. Epub 2021 Sep 16.
6
KEGG mapping tools for uncovering hidden features in biological data.
Protein Sci. 2022 Jan;31(1):47-53. doi: 10.1002/pro.4172. Epub 2021 Aug 26.
7
Bacterial Outer Membrane Vesicles: From Discovery to Applications.
Annu Rev Microbiol. 2021 Oct 8;75:609-630. doi: 10.1146/annurev-micro-052821-031444. Epub 2021 Aug 5.
8
Cystic fibrosis.
Lancet. 2021 Jun 5;397(10290):2195-2211. doi: 10.1016/S0140-6736(20)32542-3.
9
Bacteria- and host-derived extracellular vesicles - two sides of the same coin?
J Cell Sci. 2021 Jun 1;134(11). doi: 10.1242/jcs.256628. Epub 2021 Jun 3.
10
Outer Membrane Vesicle Induction and Isolation for Vaccine Development.
Front Microbiol. 2021 Feb 4;12:629090. doi: 10.3389/fmicb.2021.629090. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验