Suppr超能文献

基于非负矩阵分解和迁移学习的单细胞 RNA-seq 数据插补。

Imputation for Single-cell RNA-seq Data with Non-negative Matrix Factorization and Transfer Learning.

机构信息

School of Mathematics and Statistics, Xidian University, Xi'an, Shaanxi, P. R. China.

出版信息

J Bioinform Comput Biol. 2023 Dec;21(6):2350029. doi: 10.1142/S0219720023500294. Epub 2024 Jan 23.

Abstract

Single-cell RNA sequencing (scRNA-seq) has been proven to be an effective technology for investigating the heterogeneity and transcriptome dynamics due to the single-cell resolution. However, one of the major problems for data obtained by scRNA-seq is excessive zeros in the count matrix, which hinders the downstream analysis enormously. Here, we present a method that integrates non-negative matrix factorization and transfer learning (NMFTL) to impute the scRNA-seq data. It borrows gene expression information from the additional dataset and adds graph-regularized terms to the decomposed matrices. These strategies not only maintain the intrinsic geometrical structure of the data itself but also further improve the accuracy of estimating the expression values by adding the transfer term in the model. The real data analysis result demonstrates that the proposed method outperforms the existing matrix-factorization-based imputation methods in recovering dropout entries, preserving gene-to-gene and cell-to-cell relationships, and in the downstream analysis, such as cell clustering analysis, the proposed method also has a good performance. For convenience, we have implemented the "NMFTL" method with R scripts, which could be available at https://github.com/FocusPaka/NMFTL.

摘要

单细胞 RNA 测序 (scRNA-seq) 由于具有单细胞分辨率,已被证明是一种研究异质性和转录组动态的有效技术。然而,scRNA-seq 获得的数据的一个主要问题是计数矩阵中存在过多的零值,这极大地阻碍了下游分析。在这里,我们提出了一种将非负矩阵分解和迁移学习 (NMFTL) 集成起来的方法来推断 scRNA-seq 数据。它从附加数据集借用基因表达信息,并在分解矩阵中添加图正则化项。这些策略不仅保持了数据本身的内在几何结构,而且通过在模型中添加转移项进一步提高了估计表达值的准确性。实际数据分析结果表明,与现有的基于矩阵分解的推断方法相比,该方法在恢复缺失值、保留基因间和细胞间关系方面表现更好,在下游分析中,如细胞聚类分析,该方法也具有良好的性能。为方便起见,我们用 R 脚本实现了“NMFTL”方法,可在 https://github.com/FocusPaka/NMFTL 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验