Suppr超能文献

基于深度学习的医学图像肺部疾病诊断系统的可解释性研究

Explainable deep learning diagnostic system for prediction of lung disease from medical images.

机构信息

SDAIA-KFUPM Joint Research Center for Artificial Intelligence, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia.

SDAIA-KFUPM Joint Research Center for Artificial Intelligence, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia; Electrical Engineering Department, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia.

出版信息

Comput Biol Med. 2024 Mar;170:108012. doi: 10.1016/j.compbiomed.2024.108012. Epub 2024 Jan 19.

Abstract

Around the globe, respiratory lung diseases pose a severe threat to human survival. Based on a central goal to reduce contiguous transmission from infected to healthy persons, several technologies have evolved for diagnosing lung pathologies. One of the emerging technologies is the utility of Artificial Intelligence (AI) based on computer vision for processing wide varieties of medical imaging but AI methods without explainability are often treated as a black box. Based on a view to demystifying the rationale influencing AI decisions, this paper designed and developed a novel low-cost explainable deep-learning diagnostic tool for predicting lung disease from medical images. For this, we investigated explainable deep learning (DL) models (conventional DL and vision transformers (ViTs)) for performing prediction of the existence of pneumonia, COVID19, or no-disease from both original and data augmentation (DA)-based medical images (from two chest X-ray datasets). The results show that our experimental consideration of the DA that combines the impact of cropping, rotation, and horizontal flipping (CROP+ROT+HF) for transforming input images and then passed as input to an Inception-V3 architecture yielded a performance that surpasses all the ViTs and other conventional DL approaches in most of the evaluated performance metrics. Overall, the results suggest that the utility of data augmentation schemes aided the DL methods to yield higher classification accuracies. Furthermore, we compared five different class activation mapping (CAM) algorithms (GradCAM, GradCAM++, EigenGradCAM, AblationCAM, and RandomCAM). The result shows that most of the examined CAM algorithms were effective in identifying the attention region containing the existence of pneumonia or COVID-19 from the medical images (chest X-rays). Our developed low-cost AI diagnostic tool (pilot system) can assist medical experts and radiographers in proffering early diagnosis of lung disease. For this, we selected five to seven deep learning models and the explainable algorithms were deployed on a novel web interface implemented via a Gradio framework.

摘要

在全球范围内,呼吸肺部疾病对人类的生存构成了严重威胁。基于减少从感染者到健康者的连续传播的核心目标,已经开发出了几种用于诊断肺部疾病的技术。其中一种新兴技术是基于计算机视觉的人工智能 (AI) 技术,用于处理各种医学成像,但缺乏可解释性的 AI 方法通常被视为黑盒。为了揭示影响 AI 决策的基本原理,本文设计并开发了一种新颖的基于深度学习的低成本可解释诊断工具,用于从医学图像预测肺部疾病。为此,我们研究了可解释深度学习 (DL) 模型(传统的 DL 和视觉转换器 (ViT)),用于从原始和数据增强 (DA) 医学图像(来自两个胸部 X 射线数据集)预测肺炎、COVID19 或无疾病的存在。结果表明,我们对 DA 的实验考虑,结合了裁剪、旋转和水平翻转(CROP+ROT+HF)的影响,用于转换输入图像,然后将其作为输入传递到 Inception-V3 架构,在大多数评估的性能指标中,性能超过了所有的 ViT 和其他传统的 DL 方法。总体而言,结果表明数据增强方案的使用帮助 DL 方法提高了分类准确率。此外,我们比较了五种不同的类激活映射 (CAM) 算法(GradCAM、GradCAM++、EigenGradCAM、AblationCAM 和 RandomCAM)。结果表明,大多数检查的 CAM 算法都能有效地从医学图像(胸部 X 光片)中识别出包含肺炎或 COVID-19 存在的注意力区域。我们开发的低成本 AI 诊断工具(试点系统)可以帮助医学专家和放射技师提供早期的肺部疾病诊断。为此,我们选择了五到七个深度学习模型,并将可解释性算法部署在一个新的基于 Gradio 框架实现的网络界面上。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验