Grupo Interdisciplinar de Sistemas Complejos, Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés 28911, Spain.
Departamento de Electromagnetismo y Física de la Materia, Universidad de Granada, Granada 18071, Spain.
Proc Natl Acad Sci U S A. 2024 Jan 30;121(5):e2309575121. doi: 10.1073/pnas.2309575121. Epub 2024 Jan 24.
During the last decades, macroecology has identified broad-scale patterns of abundances and diversity of microbial communities and put forward some potential explanations for them. However, these advances are not paralleled by a full understanding of the dynamical processes behind them. In particular, abundance fluctuations of different species are found to be correlated, both across time and across communities in metagenomic samples. Reproducing such correlations through appropriate population models remains an open challenge. The present paper tackles this problem and points to sparse species interactions as a necessary mechanism to account for them. Specifically, we discuss several possibilities to include interactions in population models and recognize Lotka-Volterra constants as a successful ansatz. For this, we design a Bayesian inference algorithm to extract sets of interaction constants able to reproduce empirical probability distributions of pairwise correlations for diverse biomes. Importantly, the inferred models still reproduce well-known single-species macroecological patterns concerning abundance fluctuations across both species and communities. Endorsed by the agreement with the empirically observed phenomenology, our analyses provide insights into the properties of the networks of microbial interactions, revealing that sparsity is a crucial feature.
在过去的几十年里,宏观生态学已经确定了微生物群落丰度和多样性的广泛模式,并提出了一些潜在的解释。然而,这些进展并没有伴随着对其背后动态过程的全面理解。特别是,在元基因组样本中,不同物种的丰度波动被发现是相关的,无论是跨越时间还是跨越群落。通过适当的种群模型再现这种相关性仍然是一个悬而未决的挑战。本文探讨了这个问题,并指出稀疏的物种相互作用是解释这些相关性的必要机制。具体来说,我们讨论了在种群模型中包含相互作用的几种可能性,并将洛特卡-沃尔泰拉常数识别为一种成功的方法。为此,我们设计了一种贝叶斯推断算法,以提取能够再现不同生物群落中成对相关性经验概率分布的相互作用常数集。重要的是,推断出的模型仍然很好地再现了关于物种和群落中丰度波动的著名单物种宏观生态学模式。我们的分析得到了微生物相互作用网络稀疏性是一个关键特征的启示,并得到了与经验观察到的现象学一致的支持。