Suppr超能文献

帕金森病的生物学分类:SynNeurGe 研究诊断标准。

A biological classification of Parkinson's disease: the SynNeurGe research diagnostic criteria.

机构信息

Department of Neurology, University Hospital, Ludwig-Maximilians-University (LMU) and German Center for Neurodegenerative Diseases, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.

Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA.

出版信息

Lancet Neurol. 2024 Feb;23(2):191-204. doi: 10.1016/S1474-4422(23)00404-0.

Abstract

With the hope that disease-modifying treatments could target the molecular basis of Parkinson's disease, even before the onset of symptoms, we propose a biologically based classification. Our classification acknowledges the complexity and heterogeneity of the disease by use of a three-component system (SynNeurGe): presence or absence of pathological α-synuclein (S) in tissues or CSF; evidence of underlying neurodegeneration (N) defined by neuroimaging procedures; and documentation of pathogenic gene variants (G) that cause or strongly predispose to Parkinson's disease. These three components are linked to a clinical component (C), defined either by a single high-specificity clinical feature or by multiple lower-specificity clinical features. The use of a biological classification will enable advances in both basic and clinical research, and move the field closer to the precision medicine required to develop disease-modifying therapies. We emphasise the initial application of these criteria exclusively for research. We acknowledge its ethical implications, its limitations, and the need for prospective validation in future studies.

摘要

我们希望疾病修饰治疗能够针对帕金森病的分子基础,甚至在症状出现之前,因此我们提出了一种基于生物学的分类方法。我们的分类方法通过使用三组分系统(SynNeurGe)承认了疾病的复杂性和异质性:组织或 CSF 中是否存在病理性α-突触核蛋白(S);神经影像学程序定义的潜在神经退行性变(N)的证据;以及导致或强烈易患帕金森病的致病性基因突变(G)的记录。这三个组成部分与临床组成部分(C)相关联,临床组成部分由单个高特异性临床特征或多个低特异性临床特征定义。使用生物学分类将促进基础和临床研究的进展,并使该领域更接近开发疾病修饰疗法所需的精准医学。我们强调这些标准的最初应用仅限于研究。我们承认其存在伦理问题,也认识到其存在局限性,并且需要在未来的研究中进行前瞻性验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验