Suppr超能文献

PDDGCN:一种基于多视图融合图卷积网络的寄生虫病药物关联预测器。

PDDGCN: A Parasitic Disease-Drug Association Predictor Based on Multi-view Fusion Graph Convolutional Network.

机构信息

School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Key Laboratory of Agricultural Sensors for Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China.

出版信息

Interdiscip Sci. 2024 Mar;16(1):231-242. doi: 10.1007/s12539-023-00600-z. Epub 2024 Jan 31.

Abstract

The precise identification of associations between diseases and drugs is paramount for comprehending the etiology and mechanisms underlying parasitic diseases. Computational approaches are highly effective in discovering and predicting disease-drug associations. However, the majority of these approaches primarily rely on link-based methodologies within distinct biomedical bipartite networks. In this study, we reorganized a fundamental dataset of parasitic disease-drug associations using the latest databases, and proposed a prediction model called PDDGCN, based on a multi-view graph convolutional network. To begin with, we fused similarity networks with binary networks to establish multi-view heterogeneous networks. We utilized neighborhood information aggregation layers to refine node embeddings within each view of the multi-view heterogeneous networks, leveraging inter- and intra-domain message passing to aggregate information from neighboring nodes. Subsequently, we integrated multiple embeddings from each view and fed them into the ultimate discriminator. The experimental results demonstrate that PDDGCN outperforms five state-of-the-art methods and four compared machine learning algorithms. Additionally, case studies have substantiated the effectiveness of PDDGCN in identifying associations between parasitic diseases and drugs. In summary, the PDDGCN model has the potential to facilitate the discovery of potential treatments for parasitic diseases and advance our comprehension of the etiology in this field. The source code is available at https://github.com/AhauBioinformatics/PDDGCN .

摘要

准确识别疾病与药物之间的关联对于理解寄生虫病的病因和机制至关重要。计算方法在发现和预测疾病-药物关联方面非常有效。然而,这些方法大多主要依赖于不同生物医学二分网络中的基于链接的方法。在这项研究中,我们使用最新的数据库重新组织了寄生虫病-药物关联的基本数据集,并提出了一种称为 PDDGCN 的预测模型,该模型基于多视图图卷积网络。首先,我们融合了相似性网络和二进制网络,建立了多视图异质网络。我们利用邻域信息聚合层来细化多视图异质网络中每个视图的节点嵌入,利用跨域和域内消息传递来聚合来自相邻节点的信息。然后,我们整合了每个视图的多个嵌入,并将其输入到最终的判别器中。实验结果表明,PDDGCN 优于五种最先进的方法和四种比较的机器学习算法。此外,案例研究证实了 PDDGCN 在识别寄生虫病和药物之间关联的有效性。总之,PDDGCN 模型有可能促进寄生虫病潜在治疗方法的发现,并增进我们对该领域病因的理解。源代码可在 https://github.com/AhauBioinformatics/PDDGCN 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验