Suppr超能文献

基于TiC MXene的纳米酶作为共反应促进剂用于增强葡萄糖生物传感的电化学发光

TiC MXene-based nanozyme as coreaction accelerator for enhancing electrochemiluminescence of glucose biosensing.

作者信息

Momeni Fatemeh, Khoshfetrat Seyyed Mehdi, Bagheri Hasan, Zarei Kobra

机构信息

School of Chemistry, Damghan University, Damghan, Iran.

Biosensor and Energy Research Center, Faculty of Basic Science, Ayatollah Boroujerdi University, Boroujerd, Iran.

出版信息

Biosens Bioelectron. 2024 Apr 15;250:116078. doi: 10.1016/j.bios.2024.116078. Epub 2024 Jan 26.

Abstract

Delamination of the exfoliated multilayer MXenes with electro-catalysts, not only leads to increasing surface area for high electrochemiluminescent (ECL) signal tracer loading but also provides highly sensitive achievements in a coreaction accelerator manner. To this end, herein, we used bromophenol blue (BPB)-delaminated multilayer TiC MXene as both a coreaction accelerator to promote the electrochemiluminescent (ECL) reaction rate of luminol (LUM) and the co-reactant HO and a substrate for retaining high loading of glucose oxidase (GOx)-conjugated polyethylene imine (PEI) along with luminophore species into more open structure of TiC MXene for sensitive detection of glucose. In the presence of glucose, in situ generating HO product through a GOx-catalyzed process could produce abundant OH radicals via the peroxidase-like activity of the BPB@TiC in the LUM ECL reaction. Moreover, decreasing the distance between the high-content LUM into the BPB@TiC and the generated OH, minimizes the decomposition of highly active OH, providing a superb ECL signal. Last, the proximity of incorporated GOx into the delaminated TiC MXene near the electrode allows efficient electron transfer between the electrode and enzyme. The integration of such amplifying effects endowed high sensitivity and excellent selectivity for glucose with a low limit of detection of 0.02 μM in the wide range of 0.01 μM-40,000 μM, enabling the feasibility of the glucose analysis in human serum samples. Overall, the enhanced ECL based on the BPB@TiC opens a new horizon to develop highly sensitive MXene-based ECL toward the field of biosensors.

摘要

将剥落的多层MXenes与电催化剂分层,不仅会增加用于高电化学发光(ECL)信号示踪剂负载的表面积,还会以共反应促进剂的方式提供高灵敏度的成果。为此,在本文中,我们使用溴酚蓝(BPB)分层的多层TiC MXene作为共反应促进剂,以提高鲁米诺(LUM)的电化学发光(ECL)反应速率以及共反应物HO,并作为底物,将葡萄糖氧化酶(GOx)共轭的聚乙烯亚胺(PEI)与发光体物种高负载保留在TiC MXene更开放的结构中,用于灵敏检测葡萄糖。在葡萄糖存在下,通过GOx催化过程原位生成HO产物,可在LUM ECL反应中通过BPB@TiC的过氧化物酶样活性产生大量的OH自由基。此外,减少高含量LUM进入BPB@TiC与生成的OH之间的距离,可使高活性OH的分解最小化,从而提供超强的ECL信号。最后,将掺入的GOx靠近电极分层的TiC MXene,可实现电极与酶之间的高效电子转移。这些放大效应的整合赋予了对葡萄糖高灵敏度和出色的选择性,在0.01 μM - 40,000 μM的宽范围内检测限低至0.02 μM,从而实现了人血清样品中葡萄糖分析的可行性。总体而言,基于BPB@TiC增强的ECL为开发针对生物传感器领域的高灵敏度基于MXene的ECL开辟了新视野。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验