Dellepiane Gaia, Casolaro Pierluigi, Gottstein Alexander, Mateu Isidre, Scampoli Paola, Braccini Saverio
Albert Einstein Center for Fundamental Physics (AEC), Laboratory for High Energy Physics (LHEP), University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland.
Albert Einstein Center for Fundamental Physics (AEC), Laboratory for High Energy Physics (LHEP), University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland.
Appl Radiat Isot. 2024 Apr;206:111220. doi: 10.1016/j.apradiso.2024.111220. Epub 2024 Jan 29.
Sc is a β-emitter which has been extensively studied for nuclear medicine applications. Its promising decay characteristics [t = 3.97 h, E [Formula: see text] = 632 keV (94.3%), E = 1157 keV (99.9%); 1499 keV (0.91%)] make it highly attractive for clinical PET imaging, offering an alternative to the widely used Ga [t = 67.7 min, E [Formula: see text] = 836 keV (87.7%)]. Notably, its nearly fourfold longer half-life opens avenues for applications with biomolecules having extended biological half-lives and enables the centralized distribution of Sc radiopharmaceuticals. An additional advantage of employing Sc as a diagnostic radioisotope lies in its counterpart, the β-emitter Sc, which is currently under investigation for targeted radiotherapy. Together, they form an ideal theranostic pair, providing a comprehensive solution for both diagnostic imaging and therapeutic applications in nuclear medicine. At the Bern medical cyclotron, a study to optimize the production of scandium radioisotopes is currently ongoing. In this context, proton irradiation of titanium targets has been investigated, exploiting the reactions Ti(p,α)Sc and Ti(p,α)Sc. This approach enables the production of Sc radioisotopes within a single PET medical cyclotron facility, employing identical chemical procedures for target preparation and post-irradiation processing. In this paper, we report on cross-section measurements of the Ti(p,α)Sc nuclear reaction using 95.7% enriched TiO targets. On the basis of the obtained results, the production yield and purity were calculated to assess the optimal irradiation conditions. Production tests were performed to confirm these findings.
钪是一种β发射体,已在核医学应用方面得到广泛研究。其有前景的衰变特性[半衰期t = 3.97小时,发射能量E[公式:见正文]= 632千电子伏(94.3%),E = 1157千电子伏(99.9%);1499千电子伏(0.91%)]使其在临床正电子发射断层显像(PET)成像中极具吸引力,为广泛使用的镓[半衰期t = 67.7分钟,发射能量E[公式:见正文]= 836千电子伏(87.7%)]提供了一种替代方案。值得注意的是,其近四倍长的半衰期为生物半衰期较长的生物分子的应用开辟了道路,并使钪放射性药物的集中配送成为可能。将钪用作诊断放射性同位素的另一个优势在于其对应的β发射体钪,目前正在对其进行靶向放射治疗研究。它们共同构成了理想的诊疗组合,为核医学中的诊断成像和治疗应用提供了全面的解决方案。在伯尔尼医用回旋加速器上,目前正在进行一项优化钪放射性同位素生产的研究。在此背景下,已对钛靶的质子辐照进行了研究,利用了Ti(p,α)Sc和Ti(p,α)Sc反应。这种方法能够在单个PET医用回旋加速器设施内生产钪放射性同位素,采用相同的化学程序进行靶制备和辐照后处理。在本文中,我们报告了使用95.7%富集的TiO靶对Ti(p,α)Sc核反应的截面测量结果。根据所得结果,计算了生产产率和纯度,以评估最佳辐照条件。进行了生产测试以证实这些发现。