Suppr超能文献

利用深度学习将彩色眼底摄影转换为吲哚菁绿血管造影以进行年龄相关性黄斑变性筛查。

Translating color fundus photography to indocyanine green angiography using deep-learning for age-related macular degeneration screening.

作者信息

Chen Ruoyu, Zhang Weiyi, Song Fan, Yu Honghua, Cao Dan, Zheng Yingfeng, He Mingguang, Shi Danli

机构信息

Experimental Ophthalmology, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.

Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.

出版信息

NPJ Digit Med. 2024 Feb 12;7(1):34. doi: 10.1038/s41746-024-01018-7.

Abstract

Age-related macular degeneration (AMD) is the leading cause of central vision impairment among the elderly. Effective and accurate AMD screening tools are urgently needed. Indocyanine green angiography (ICGA) is a well-established technique for detecting chorioretinal diseases, but its invasive nature and potential risks impede its routine clinical application. Here, we innovatively developed a deep-learning model capable of generating realistic ICGA images from color fundus photography (CF) using generative adversarial networks (GANs) and evaluated its performance in AMD classification. The model was developed with 99,002 CF-ICGA pairs from a tertiary center. The quality of the generated ICGA images underwent objective evaluation using mean absolute error (MAE), peak signal-to-noise ratio (PSNR), structural similarity measures (SSIM), etc., and subjective evaluation by two experienced ophthalmologists. The model generated realistic early, mid and late-phase ICGA images, with SSIM spanned from 0.57 to 0.65. The subjective quality scores ranged from 1.46 to 2.74 on the five-point scale (1 refers to the real ICGA image quality, Kappa 0.79-0.84). Moreover, we assessed the application of translated ICGA images in AMD screening on an external dataset (n = 13887) by calculating area under the ROC curve (AUC) in classifying AMD. Combining generated ICGA with real CF images improved the accuracy of AMD classification with AUC increased from 0.93 to 0.97 (P < 0.001). These results suggested that CF-to-ICGA translation can serve as a cross-modal data augmentation method to address the data hunger often encountered in deep-learning research, and as a promising add-on for population-based AMD screening. Real-world validation is warranted before clinical usage.

摘要

年龄相关性黄斑变性(AMD)是老年人中心视力损害的主要原因。迫切需要有效且准确的AMD筛查工具。吲哚菁绿血管造影(ICGA)是一种用于检测脉络膜视网膜疾病的成熟技术,但其侵入性和潜在风险阻碍了其在临床中的常规应用。在此,我们创新性地开发了一种深度学习模型,该模型能够使用生成对抗网络(GAN)从彩色眼底照片(CF)生成逼真的ICGA图像,并评估其在AMD分类中的性能。该模型是使用来自三级中心的99,002对CF-ICGA数据开发的。使用平均绝对误差(MAE)、峰值信噪比(PSNR)、结构相似性度量(SSIM)等对生成的ICGA图像质量进行客观评估,并由两位经验丰富的眼科医生进行主观评估。该模型生成了逼真的早期、中期和晚期ICGA图像,SSIM范围为0.57至0.65。主观质量评分在五分制中为1.46至2.74(1表示真实ICGA图像质量,Kappa为0.79 - 0.84)。此外,我们通过计算在AMD分类中的ROC曲线下面积(AUC),在外部数据集(n = 13887)上评估了翻译后的ICGA图像在AMD筛查中的应用。将生成的ICGA与真实CF图像相结合提高了AMD分类的准确性,AUC从0.93提高到0.97(P < 0.001)。这些结果表明,CF到ICGA的转换可以作为一种跨模态数据增强方法,以解决深度学习研究中经常遇到的数据匮乏问题,并作为基于人群的AMD筛查的一种有前景的补充方法。在临床使用之前需要进行实际验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d873/10861476/1ab86c6b95bb/41746_2024_1018_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验