Regenerative Engineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
Department of Biomedicine, University Hospital Basel, University of Basel, Basel 4031, Switzerland.
ACS Appl Mater Interfaces. 2024 Feb 28;16(8):9925-9943. doi: 10.1021/acsami.3c18903. Epub 2024 Feb 16.
Implantation of a phenotypically stable cartilage graft could represent a viable approach for repairing osteoarthritic (OA) cartilage lesions. In the present study, we investigated the effects of modulating the bone morphogenetic protein (BMP), transforming growth factor beta (TGFβ), and interleukin-1 (IL-1) signaling cascades in human bone marrow stromal cell (hBMSC)-encapsulated silk fibroin gelatin (SF-G) bioink. The selected small molecules LDN193189, TGFβ3, and IL1 receptor antagonist (IL1Ra) are covalently conjugated to SF-G biomaterial to ensure sustained release, increased bioavailability, and printability, confirmed by ATR-FTIR, release kinetics, and rheological analyses. The 3D bioprinted constructs with chondrogenically differentiated hBMSCs were incubated in an OA-inducing medium for 14 days and assessed through a detailed qPCR, immunofluorescence, and biochemical analyses. Despite substantial heterogeneity in the observations among the donors, the IL1Ra molecule illustrated the maximum efficiency in enhancing the expression of articular cartilage components, reducing the expression of hypertrophic markers (re-validated by the GeneMANIA tool), as well as reducing the production of inflammatory molecules by the hBMSCs. Therefore, this study demonstrated a novel strategy to develop a chemically decorated, printable and biomimetic SF-G bioink to produce hyaline cartilage grafts resistant to acquiring OA traits that can be used for the treatment of degenerated cartilage lesions.
植入表型稳定的软骨移植物可能是修复骨关节炎 (OA) 软骨损伤的一种可行方法。在本研究中,我们研究了调节骨形态发生蛋白 (BMP)、转化生长因子 β (TGFβ) 和白细胞介素 1 (IL-1) 信号通路在人骨髓基质细胞 (hBMSC) 包裹丝素-明胶 (SF-G) 生物墨水的影响。选择的小分子 LDN193189、TGFβ3 和 IL1 受体拮抗剂 (IL1Ra) 与 SF-G 生物材料共价结合,以确保持续释放、增加生物利用度和可打印性,通过 ATR-FTIR、释放动力学和流变学分析得到证实。用软骨分化的 hBMSCs 三维打印构建体在 OA 诱导培养基中孵育 14 天,并通过详细的 qPCR、免疫荧光和生化分析进行评估。尽管供体之间的观察结果存在很大的异质性,但 IL1Ra 分子在增强关节软骨成分的表达、降低肥大标志物的表达(通过 GeneMANIA 工具重新验证)以及减少 hBMSCs 产生炎症分子方面表现出最大的效率。因此,这项研究展示了一种开发化学修饰、可打印和仿生 SF-G 生物墨水的新策略,以生产对获得 OA 特征具有抗性的透明软骨移植物,可用于治疗退化的软骨损伤。