Suppr超能文献

用于三阴性乳腺癌精准肿瘤学的人工智能:从黑色素瘤中汲取经验。

Artificial Intelligence for Precision Oncology of Triple-Negative Breast Cancer: Learning from Melanoma.

作者信息

Garrone Ornella, La Porta Caterina A M

机构信息

Medical Oncology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy.

Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.

出版信息

Cancers (Basel). 2024 Feb 6;16(4):692. doi: 10.3390/cancers16040692.

Abstract

Thanks to new technologies using artificial intelligence (AI) and machine learning, it is possible to use large amounts of data to try to extract information that can be used for personalized medicine. The great challenge of the future is, on the one hand, to acquire masses of biological data that nowadays are still limited and, on the other hand, to develop innovative strategies to extract information that can then be used for the development of predictive models. From this perspective, we discuss these aspects in the context of triple-negative breast cancer, a tumor where a specific treatment is still lacking and new therapies, such as immunotherapy, are under investigation. Since immunotherapy is already in use for other tumors such as melanoma, we discuss the strengths and weaknesses identified in the use of immunotherapy with melanoma to try to find more successful strategies. It is precisely in this context that AI and predictive tools can be extremely valuable. Therefore, the discoveries and advancements in immunotherapy for melanoma provide a foundation for developing effective immunotherapies for triple-negative breast cancer. Shared principles, such as immune system activation, checkpoint inhibitors, and personalized treatment, can be applied to TNBC to improve patient outcomes and offer new hope for those with aggressive, hard-to-treat breast cancer.

摘要

得益于使用人工智能(AI)和机器学习的新技术,利用大量数据来尝试提取可用于个性化医疗的信息成为可能。未来的巨大挑战一方面是获取如今仍很有限的大量生物数据,另一方面是开发创新策略来提取随后可用于开发预测模型的信息。从这个角度出发,我们在三阴性乳腺癌的背景下讨论这些方面,三阴性乳腺癌是一种仍缺乏特定治疗方法且免疫疗法等新疗法正在研究中的肿瘤。由于免疫疗法已用于黑色素瘤等其他肿瘤,我们讨论在黑色素瘤免疫疗法使用中发现的优势和劣势,以试图找到更成功的策略。正是在这种背景下,AI和预测工具可能极具价值。因此,黑色素瘤免疫疗法的发现和进展为开发三阴性乳腺癌的有效免疫疗法奠定了基础。诸如免疫系统激活、检查点抑制剂和个性化治疗等共同原则可应用于三阴性乳腺癌,以改善患者预后,并为那些患有侵袭性、难以治疗的乳腺癌患者带来新希望。

相似文献

2
Advancements and challenges in triple-negative breast cancer: a comprehensive review of therapeutic and diagnostic strategies.
Front Oncol. 2024 May 28;14:1405491. doi: 10.3389/fonc.2024.1405491. eCollection 2024.
3
Progress and pitfalls in the use of immunotherapy for patients with triple negative breast cancer.
Expert Opin Investig Drugs. 2022 Jun;31(6):567-591. doi: 10.1080/13543784.2022.2049232. Epub 2022 Mar 9.
4
A framework for validating AI in precision medicine: considerations from the European ITFoC consortium.
BMC Med Inform Decis Mak. 2021 Oct 2;21(1):274. doi: 10.1186/s12911-021-01634-3.
5
Applying artificial intelligence for cancer immunotherapy.
Acta Pharm Sin B. 2021 Nov;11(11):3393-3405. doi: 10.1016/j.apsb.2021.02.007. Epub 2021 Feb 11.
7
Current Triple-Negative Breast Cancer Subtypes: Dissecting the Most Aggressive Form of Breast Cancer.
Front Oncol. 2021 Jun 16;11:681476. doi: 10.3389/fonc.2021.681476. eCollection 2021.
9
Artificial intelligence-assisted selection and efficacy prediction of antineoplastic strategies for precision cancer therapy.
Semin Cancer Biol. 2023 May;90:57-72. doi: 10.1016/j.semcancer.2023.02.005. Epub 2023 Feb 14.
10
Immunotherapy in triple-negative breast cancer: Insights into tumor immune landscape and therapeutic opportunities.
Front Mol Biosci. 2022 Aug 19;9:903065. doi: 10.3389/fmolb.2022.903065. eCollection 2022.

引用本文的文献

1
Tailored therapies for triple-negative breast cancer: current landscape and future perceptions.
Naunyn Schmiedebergs Arch Pharmacol. 2025 Mar 3. doi: 10.1007/s00210-025-03896-4.
3
Present and Future of Immunotherapy for Triple-Negative Breast Cancer.
Cancers (Basel). 2024 Sep 24;16(19):3250. doi: 10.3390/cancers16193250.

本文引用的文献

2
SiGra: single-cell spatial elucidation through an image-augmented graph transformer.
Nat Commun. 2023 Sep 12;14(1):5618. doi: 10.1038/s41467-023-41437-w.
4
Artificial intelligence in breast cancer diagnostics.
Cell Rep Med. 2022 Dec 20;3(12):100851. doi: 10.1016/j.xcrm.2022.100851.
5
Nuclear Biophysical Changes during Human Melanoma Plasticity.
Cells Tissues Organs. 2024;213(2):120-132. doi: 10.1159/000528601. Epub 2022 Dec 12.
6
Artificial Intelligence in Biological Sciences.
Life (Basel). 2022 Sep 14;12(9):1430. doi: 10.3390/life12091430.
7
Artificial intelligence in histopathology: enhancing cancer research and clinical oncology.
Nat Cancer. 2022 Sep;3(9):1026-1038. doi: 10.1038/s43018-022-00436-4. Epub 2022 Sep 22.
8
Heterogeneity of triple negative breast cancer: Current advances in subtyping and treatment implications.
J Exp Clin Cancer Res. 2022 Sep 1;41(1):265. doi: 10.1186/s13046-022-02476-1.
9
New antibody-drug conjugates (ADCs) in breast cancer-an overview of ADCs recently approved and in later stages of development.
Explor Target Antitumor Ther. 2022;3(1):27-36. doi: 10.37349/etat.2022.00069. Epub 2022 Feb 24.
10
Recent advances in therapeutic strategies for triple-negative breast cancer.
J Hematol Oncol. 2022 Aug 29;15(1):121. doi: 10.1186/s13045-022-01341-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验