Suppr超能文献

新型多元灰色模型研究及其在二氧化碳排放预测中的应用。

The research on a novel multivariate grey model and its application in carbon dioxide emissions prediction.

机构信息

Ocean University of China, Qingdao, 266100, China.

Qingdao Financial Research Institute, Qingdao, 266100, China.

出版信息

Environ Sci Pollut Res Int. 2024 Mar;31(14):21986-22011. doi: 10.1007/s11356-024-32262-9. Epub 2024 Feb 24.

Abstract

Accurate small-sample prediction is an urgent, very difficult, and challenging task due to the quality of data storage restricted in most realistic situations, especially in developing countries. The grey model performs well in small-sample prediction. Therefore, a novel multivariate grey model is proposed in this study, called FBNGM (1, N, r), with a fractional order operator, which can increase the impact of new information and background value coefficient to achieve high prediction accuracy. The utilization of an intelligence optimization algorithm to tune the parameters of the multivariate grey model is an improvement over the conventional method, as it leads to superior accuracy. This study conducts two sets of numerical experiments on CO emissions to evaluate the effectiveness of the proposed FBNGM (1, N, r) model. The FBNGM (1, N, r) model has been shown through experiments to effectively leverage all available data and avoid the problem of overfitting. Moreover, it can not only obtain higher prediction accuracy than comparison models but also further confirm the indispensable importance of various influencing factors in CO emissions prediction. Additionally, the proposed FBNGM (1, N, r) model is employed to forecast CO emissions in the future, which can be taken as a reference for relevant departments to formulate policies.

摘要

由于大多数现实情况下数据存储质量受到限制,特别是在发展中国家,准确的小样本预测是一个紧迫、非常困难和具有挑战性的任务。灰色模型在小样本预测中表现良好。因此,本研究提出了一种新的多元灰色模型,称为 FBNGM(1,N,r),具有分数阶算子,可以增加新信息和背景值系数的影响,以实现高精度预测。利用智能优化算法来调整多元灰色模型的参数是对传统方法的改进,因为它可以提高准确性。本研究对 CO 排放进行了两组数值实验,以评估所提出的 FBNGM(1,N,r)模型的有效性。实验表明,FBNGM(1,N,r)模型可以有效地利用所有可用数据,避免过拟合问题。此外,它不仅可以获得比比较模型更高的预测精度,还可以进一步确认 CO 排放预测中各种影响因素的不可或缺的重要性。此外,所提出的 FBNGM(1,N,r)模型被用于预测未来的 CO 排放,可以作为相关部门制定政策的参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验