Suppr超能文献

基于机器学习探讨铁死亡相关基因载脂蛋白 L2 作为脓毒症诱导的急性呼吸窘迫综合征潜在生物标志物。

Exploring the ferroptosis-related gene lipocalin 2 as a potential biomarker for sepsis-induced acute respiratory distress syndrome based on machine learning.

机构信息

The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China.

The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, Guangdong, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, Guangdong, China.

出版信息

Biochim Biophys Acta Mol Basis Dis. 2024 Apr;1870(4):167101. doi: 10.1016/j.bbadis.2024.167101. Epub 2024 Feb 27.

Abstract

BACKGROUND

Sepsis is a major cause of mortality in patients, and ARDS is one of the most common outcomes. The pathophysiology of acute respiratory distress syndrome (ARDS) caused by sepsis is significantly impacted by genes related to ferroptosis.

METHODS

In this study, Weighted gene co-expression network analysis (WGCNA), protein-protein interaction (PPI) networks, functional enrichment analysis, and machine learning were employed to identify characterized genes and to construct receiver operating characteristic (ROC) curves. Additionally, DNA methylation levels were quantified and single-cell analysis was conducted. To validate the alterations in the expression of Lipocalin-2 (LCN2) and ferroptosis-related proteins in the in vitro model, Western blotting was carried out, and the changes in intracellular ROS and Fe levels were detected.

RESULTS

A combination of eight machine learning algorithms, including RFE, LASSO, RandomForest, SVM-RFE, GBDT, Bagging, XGBoost, and Boruta, were used with a machine learning model to highlight the significance of LCN2 as a key gene in sepsis-induced ARDS. Analysis of immune cell infiltration showed a positive correlation between neutrophils and LCN2. In a cell model induced by LPS, it was found that Ferrostatin-1 (Fer-1), a ferroptosis inhibitor, was able to reverse the expression of LCN2. Knocking down LCN2 in BEAS-2B cells reversed the LPS-induced lipid peroxidation, Fe levels, ACSL4, and GPX4 levels, indicating that LCN2, a ferroptosis-related gene (FRG), plays a crucial role in mediating ferroptosis.

CONCLUSION

Upon establishing an FRG model for individuals with sepsis-induced ARDS, we determined that LCN2 could be a dependable marker for predicting survival in these patients. This finding provides a basis for more accurate ARDS diagnosis and the exploration of innovative treatment options.

摘要

背景

脓毒症是导致患者死亡的主要原因之一,急性呼吸窘迫综合征(ARDS)是其最常见的结局之一。脓毒症引起的急性呼吸窘迫综合征(ARDS)的病理生理学受到与铁死亡相关基因的显著影响。

方法

本研究采用加权基因共表达网络分析(WGCNA)、蛋白质-蛋白质相互作用(PPI)网络、功能富集分析和机器学习来识别特征基因,并构建受试者工作特征(ROC)曲线。此外,还进行了 DNA 甲基化水平的定量和单细胞分析。为了验证体外模型中脂联素(LCN2)和铁死亡相关蛋白表达的变化,进行了 Western blot 实验,并检测了细胞内 ROS 和 Fe 水平的变化。

结果

采用包括 RFE、LASSO、RandomForest、SVM-RFE、GBDT、Bagging、XGBoost 和 Boruta 在内的八种机器学习算法与机器学习模型相结合,突出了 LCN2 作为脓毒症诱导的 ARDS 关键基因的重要性。免疫细胞浸润分析显示中性粒细胞与 LCN2 呈正相关。在 LPS 诱导的细胞模型中,发现铁死亡抑制剂 Ferrostatin-1(Fer-1)能够逆转 LCN2 的表达。在 BEAS-2B 细胞中敲低 LCN2 可逆转 LPS 诱导的脂质过氧化、Fe 水平、ACSL4 和 GPX4 水平,表明 LCN2 作为铁死亡相关基因(FRG)在介导铁死亡中起着关键作用。

结论

在建立脓毒症诱导的 ARDS 个体 FRG 模型后,我们确定 LCN2 可能是预测这些患者生存的可靠标志物。这一发现为更准确的 ARDS 诊断和探索创新治疗方案提供了依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验