Yao Xin-Qiu, Hamelberg Donald
Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States.
Department of Chemistry, University of Nebraska Omaha, Omaha, Nebraska 68182-0266, United States.
JACS Au. 2024 Feb 6;4(2):837-846. doi: 10.1021/jacsau.3c00806. eCollection 2024 Feb 26.
Fully understanding the mechanism of allosteric regulation in biomolecules requires separating and examining all of the involved factors. In enzyme catalysis, allosteric effector binding shifts the structure and dynamics of the active site, leading to modified energetic (e.g., energy barrier) and dynamical (e.g., diffusion coefficient) factors underlying the catalyzed reaction rate. Such modifications can be subtle and dependent on the type of allosteric effector, representing a fine-tuning of protein function. The microscopic description of allosteric regulation at the level of function-dictating factors has prospective applications in fundamental and pharmaceutical sciences, which is, however, largely missing so far. Here, we characterize the allosteric fine-tuning of enzyme catalysis, using human Pin1 as an example, by performing more than half-millisecond all-atom molecular dynamics simulations. Changes of reaction kinetics and the dictating factors, including the free energy surface along the reaction coordinate and the diffusion coefficient of the reaction dynamics, under various enzyme and allosteric effector binding conditions are examined. Our results suggest equal importance of the energetic and dynamical factors, both of which can be modulated allosterically, and the combined effect determines the final allosteric output. We also reveal the potential dynamic basis for allosteric modulation using an advanced statistical technique to detect function-related conformational dynamics. Methods developed in this work can be applied to other allosteric systems.
要全面理解生物分子中的变构调节机制,需要分离并研究所有涉及的因素。在酶催化中,变构效应物的结合会改变活性位点的结构和动力学,从而导致催化反应速率背后的能量(例如,能垒)和动力学(例如,扩散系数)因素发生改变。这种改变可能很微妙,并且取决于变构效应物的类型,代表了蛋白质功能的一种微调。在决定功能的因素层面上对变构调节进行微观描述在基础科学和药学领域具有潜在应用,但目前在很大程度上还缺失。在此,我们以人类Pin1为例,通过进行超过半毫秒的全原子分子动力学模拟,来表征酶催化的变构微调。我们研究了在各种酶和变构效应物结合条件下反应动力学以及决定因素的变化,包括沿反应坐标的自由能表面和反应动力学的扩散系数。我们的结果表明能量因素和动力学因素同等重要,两者都可以通过变构进行调节,并且综合效应决定了最终的变构输出。我们还使用先进的统计技术来检测与功能相关的构象动力学,揭示了变构调节的潜在动态基础。这项工作中开发的方法可应用于其他变构系统。