Suppr超能文献

一种基于多酚氧化酶及其纳米酶的新型混合传感器阵列,结合基于机器学习的双输出模型来识别茶多酚和中国茶。

A novel hybrid sensor array based on the polyphenol oxidase and its nanozymes combined with the machine learning based dual output model to identify tea polyphenols and Chinese teas.

作者信息

Yang Xiaoyu, Bi Zhichun, Yin Chenghui, Huang Hui, Li Yongxin

机构信息

College of Food Science and Engineering, Jilin University, Changchun 130025, PR China.

College of Food Science and Engineering, Jilin University, Changchun 130025, PR China.

出版信息

Talanta. 2024 May 15;272:125842. doi: 10.1016/j.talanta.2024.125842. Epub 2024 Feb 27.

Abstract

A novel sensor array was developed based on the enzyme/nanozyme hybridization for the identification of tea polyphenols (TPs) and Chinese teas. The enzyme/nanozyme with polyphenol oxidase activity can catalyze the reaction between TPs and 4-aminoantipyrine (4-AAP) to produce differences in color, and the sensor array was thus constructed to accurately identify TPs mixed in different species, concentrations, or ratios. In addition, a machine learning based dual output model was further used to effectively predict the classes and concentrations of unknown samples. Therefore, the qualitative and quantitative detection of TPs can be realized continuously and quickly. Furthermore, the sensor array combining the machine learning based dual output model was also utilized for the identification of Chinese teas. The method can distinguish the six teas series in China, and then precisely differentiate the more specific tea varieties. This study provides an efficient and facile strategy for the identification of teas and tea products.

摘要

基于酶/纳米酶杂交技术开发了一种新型传感器阵列,用于鉴定茶多酚(TPs)和中国茶。具有多酚氧化酶活性的酶/纳米酶可催化TPs与4-氨基安替比林(4-AAP)之间的反应,产生颜色差异,从而构建传感器阵列以准确识别不同种类、浓度或比例混合的TPs。此外,基于机器学习的双输出模型进一步用于有效预测未知样品的类别和浓度。因此,可以连续快速地实现TPs的定性和定量检测。此外,结合基于机器学习的双输出模型的传感器阵列还用于中国茶的鉴定。该方法可以区分中国的六大茶系,然后精确区分更具体的茶品种。本研究为茶叶和茶产品的鉴定提供了一种高效便捷的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验