Suppr超能文献

保护性人源单克隆抗体针对流感病毒神经氨酸酶底面的保守弱点部位。

Protective human monoclonal antibodies target conserved sites of vulnerability on the underside of influenza virus neuraminidase.

机构信息

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.

Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA.

出版信息

Immunity. 2024 Mar 12;57(3):574-586.e7. doi: 10.1016/j.immuni.2024.02.003. Epub 2024 Mar 1.

Abstract

Continuously evolving influenza viruses cause seasonal epidemics and pose global pandemic threats. Although viral neuraminidase (NA) is an effective drug and vaccine target, our understanding of the NA antigenic landscape still remains incomplete. Here, we describe NA-specific human antibodies that target the underside of the NA globular head domain, inhibit viral propagation of a wide range of human H3N2, swine-origin variant H3N2, and H2N2 viruses, and confer both pre- and post-exposure protection against lethal H3N2 infection in mice. Cryo-EM structures of two such antibodies in complex with NA reveal non-overlapping epitopes covering the underside of the NA head. These sites are highly conserved among N2 NAs yet inaccessible unless the NA head tilts or dissociates. Our findings help guide the development of effective countermeasures against ever-changing influenza viruses by identifying hidden conserved sites of vulnerability on the NA underside.

摘要

不断演变的流感病毒会引起季节性流行,并构成全球大流行的威胁。尽管病毒神经氨酸酶(NA)是一种有效的药物和疫苗靶点,但我们对 NA 抗原表位的理解仍然不完整。在这里,我们描述了针对 NA 球形头部结构域底面的 NA 特异性人源抗体,这些抗体能够抑制广泛的人源 H3N2、猪源变异 H3N2 和 H2N2 病毒的复制,并在小鼠中提供针对致死性 H3N2 感染的预防和治疗效果。两种此类抗体与 NA 复合物的冷冻电镜结构揭示了非重叠的表位,覆盖了 NA 头部的底面。这些位点在 N2 NA 中高度保守,但除非 NA 头部倾斜或解离,否则无法接触到这些位点。我们的研究结果通过确定 NA 底面的隐藏保守脆弱性位点,有助于指导针对不断变化的流感病毒的有效对策的开发。

相似文献

1
Protective human monoclonal antibodies target conserved sites of vulnerability on the underside of influenza virus neuraminidase.
Immunity. 2024 Mar 12;57(3):574-586.e7. doi: 10.1016/j.immuni.2024.02.003. Epub 2024 Mar 1.
2
Leveraging vaccination-induced protective antibodies to define conserved epitopes on influenza N2 neuraminidase.
Immunity. 2023 Nov 14;56(11):2621-2634.e6. doi: 10.1016/j.immuni.2023.10.005.
3
The antigenic landscape of human influenza N2 neuraminidases from 2009 until 2017.
Elife. 2024 May 28;12:RP90782. doi: 10.7554/eLife.90782.
7
Antibodies Directed toward Neuraminidase N1 Control Disease in a Mouse Model of Influenza.
J Virol. 2018 Jan 30;92(4). doi: 10.1128/JVI.01584-17. Print 2018 Feb 15.
8
Highly Cross-Reactive and Protective Influenza A Virus H3N2 Hemagglutinin- and Neuraminidase-Specific Human Monoclonal Antibodies.
Microbiol Spectr. 2023 Aug 17;11(4):e0472822. doi: 10.1128/spectrum.04728-22. Epub 2023 Jun 15.

引用本文的文献

2
Pathogen virulence genes: Advances, challenges and future directions in infectious disease research (Review).
Int J Mol Med. 2025 Nov;56(5). doi: 10.3892/ijmm.2025.5614. Epub 2025 Aug 24.
3
Broad neuraminidase antibodies confer protection against seasonal and avian influenza viruses.
Nat Commun. 2025 Aug 2;16(1):7103. doi: 10.1038/s41467-025-62040-1.
5
Fluorescence-barcoded cell lines stably expressing membrane-anchored influenza neuraminidases.
Vaccine. 2025 May 22;56:127157. doi: 10.1016/j.vaccine.2025.127157. Epub 2025 Apr 21.
6
Identification of a seasonal influenza vaccine-induced broadly protective neuraminidase antibody.
J Exp Med. 2025 Jun 2;222(6). doi: 10.1084/jem.20241930. Epub 2025 Apr 3.
7
Fluorescence-barcoded cell lines stably expressing membrane-anchored influenza neuraminidases.
bioRxiv. 2025 Jan 2:2025.01.01.631020. doi: 10.1101/2025.01.01.631020.

本文引用的文献

1
Leveraging vaccination-induced protective antibodies to define conserved epitopes on influenza N2 neuraminidase.
Immunity. 2023 Nov 14;56(11):2621-2634.e6. doi: 10.1016/j.immuni.2023.10.005.
2
Human anti-N1 monoclonal antibodies elicited by pandemic H1N1 virus infection broadly inhibit HxN1 viruses in vitro and in vivo.
Immunity. 2023 Aug 8;56(8):1927-1938.e8. doi: 10.1016/j.immuni.2023.07.004. Epub 2023 Jul 27.
3
A pan-influenza antibody inhibiting neuraminidase via receptor mimicry.
Nature. 2023 Jun;618(7965):590-597. doi: 10.1038/s41586-023-06136-y. Epub 2023 May 31.
5
Breathing and Tilting: Mesoscale Simulations Illuminate Influenza Glycoprotein Vulnerabilities.
ACS Cent Sci. 2022 Dec 28;8(12):1646-1663. doi: 10.1021/acscentsci.2c00981. Epub 2022 Dec 8.
8
Structure-based design of stabilized recombinant influenza neuraminidase tetramers.
Nat Commun. 2022 Apr 5;13(1):1825. doi: 10.1038/s41467-022-29416-z.
9
Architecture and antigenicity of the Nipah virus attachment glycoprotein.
Science. 2022 Mar 25;375(6587):1373-1378. doi: 10.1126/science.abm5561. Epub 2022 Mar 3.
10
DeepEMhancer: a deep learning solution for cryo-EM volume post-processing.
Commun Biol. 2021 Jul 15;4(1):874. doi: 10.1038/s42003-021-02399-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验