Suppr超能文献

氧化环化试剂揭示色氨酸阳离子-π 相互作用。

Oxidative cyclization reagents reveal tryptophan cation-π interactions.

机构信息

Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.

California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA.

出版信息

Nature. 2024 Mar;627(8004):680-687. doi: 10.1038/s41586-024-07140-6. Epub 2024 Mar 6.

Abstract

Methods for selective covalent modification of amino acids on proteins can enable a diverse array of applications, spanning probes and modulators of protein function to proteomics. Owing to their high nucleophilicity, cysteine and lysine residues are the most common points of attachment for protein bioconjugation chemistry through acid-base reactivity. Here we report a redox-based strategy for bioconjugation of tryptophan, the rarest amino acid, using oxaziridine reagents that mimic oxidative cyclization reactions in indole-based alkaloid biosynthetic pathways to achieve highly efficient and specific tryptophan labelling. We establish the broad use of this method, termed tryptophan chemical ligation by cyclization (Trp-CLiC), for selectively appending payloads to tryptophan residues on peptides and proteins with reaction rates that rival traditional click reactions and enabling global profiling of hyper-reactive tryptophan sites across whole proteomes. Notably, these reagents reveal a systematic map of tryptophan residues that participate in cation-π interactions, including functional sites that can regulate protein-mediated phase-separation processes.

摘要

方法用于选择性共价修饰蛋白质上的氨基酸可以实现各种各样的应用,从蛋白质功能的探针和调节剂到蛋白质组学。由于其高亲核性,半胱氨酸和赖氨酸残基是通过酸碱反应性进行蛋白质生物缀合化学中最常见的附着点。在这里,我们报告了一种基于氧化还原的策略,用于使用氧化氮嗪试剂对色氨酸(最稀有的氨基酸)进行生物缀合,该试剂模拟吲哚类生物碱生物合成途径中的氧化环化反应,以实现高效和特异性的色氨酸标记。我们建立了这种方法的广泛应用,称为通过环化的色氨酸化学连接(Trp-CLiC),用于选择性地将有效载荷附加到肽和蛋白质上的色氨酸残基上,其反应速率可与传统的点击反应相媲美,并能够对整个蛋白质组中的超反应性色氨酸位点进行全局分析。值得注意的是,这些试剂揭示了参与阳离子-π相互作用的色氨酸残基的系统图谱,包括可以调节蛋白质介导的相分离过程的功能位点。

相似文献

1
Oxidative cyclization reagents reveal tryptophan cation-π interactions.
Nature. 2024 Mar;627(8004):680-687. doi: 10.1038/s41586-024-07140-6. Epub 2024 Mar 6.
3
π-Cation interactions as the origin of the weak absorption at 532 nm observed in tryptophan-containing polypeptides.
Photochem Photobiol Sci. 2012 Jun;11(6):962-6. doi: 10.1039/c2pp05341a. Epub 2012 Jan 25.
4
Chemo- and Regioselective Ethynylation of Tryptophan-Containing Peptides and Proteins.
Chemistry. 2016 Jan 26;22(5):1572-6. doi: 10.1002/chem.201504462. Epub 2015 Dec 22.
5
Redox-based reagents for chemoselective methionine bioconjugation.
Science. 2017 Feb 10;355(6325):597-602. doi: 10.1126/science.aal3316.
6
Chemoselective Methionine Bioconjugation on a Polypeptide, Protein, and Proteome.
Biochemistry. 2020 Jan 21;59(2):132-138. doi: 10.1021/acs.biochem.9b00789. Epub 2019 Oct 14.
7
Bioinspired Thiophosphorodichloridate Reagents for Chemoselective Histidine Bioconjugation.
J Am Chem Soc. 2019 May 8;141(18):7294-7301. doi: 10.1021/jacs.8b11912. Epub 2019 Apr 24.
8
Exploring Protein Bioconjugation: A Redox-Based Strategy for Tryptophan Targeting.
Research (Wash D C). 2024 Jul 4;7:0410. doi: 10.34133/research.0410. eCollection 2024.
10
Novel chemical degradation pathways of proteins mediated by tryptophan oxidation: tryptophan side chain fragmentation.
J Pharm Pharmacol. 2018 May;70(5):655-665. doi: 10.1111/jphp.12688. Epub 2017 Jan 30.

引用本文的文献

1
Cysteine reactivity profiling identifies host regulators of replication in human macrophages.
bioRxiv. 2025 Sep 3:2025.08.30.673236. doi: 10.1101/2025.08.30.673236.
2
Late-Stage Aromatic C-H Bond Functionalization for Cysteine/Selenocysteine Bioconjugation.
J Am Chem Soc. 2025 Sep 3;147(35):31811-31820. doi: 10.1021/jacs.5c08936. Epub 2025 Aug 19.
3
Regioselective rapid ene-type reaction (RRER) enables bioconjugation of histone serotonylation.
RSC Chem Biol. 2025 Jul 17;6(8):1278-1283. doi: 10.1039/d5cb00159e. eCollection 2025 Jul 30.
5
PEARLs of wisdom for ribosome-independent peptide bond synthesis.
Proc Natl Acad Sci U S A. 2025 Apr 29;122(17):e2504930122. doi: 10.1073/pnas.2504930122. Epub 2025 Apr 21.
6
Advances in the chemical synthesis of human proteoforms.
Sci China Life Sci. 2025 Apr 8. doi: 10.1007/s11427-024-2860-5.
7
Photocatalyzed elaboration of antibody-based bioconjugates.
Beilstein J Org Chem. 2025 Mar 18;21:616-629. doi: 10.3762/bjoc.21.49. eCollection 2025.
8
Substrate recognition by a peptide-aminoacyl-tRNA ligase.
Proc Natl Acad Sci U S A. 2025 Mar 25;122(12):e2423858122. doi: 10.1073/pnas.2423858122. Epub 2025 Mar 19.
9
A glycan foldamer that uses carbohydrate-aromatic interactions to perform catalysis.
Nat Chem. 2025 Jun;17(6):883-889. doi: 10.1038/s41557-025-01763-6. Epub 2025 Feb 26.
10
The Cation-π Interaction in Chemistry and Biology.
Chem Rev. 2025 Mar 12;125(5):2793-2808. doi: 10.1021/acs.chemrev.4c00707. Epub 2025 Feb 20.

本文引用的文献

2
Yeast- and antibody-based tools for studying tryptophan C-mannosylation.
Nat Chem Biol. 2021 Apr;17(4):428-437. doi: 10.1038/s41589-020-00727-w. Epub 2021 Feb 4.
3
Residue-Selective Protein C-Formylation via Sequential Difluoroalkylation-Hydrolysis.
ACS Cent Sci. 2021 Jan 27;7(1):145-155. doi: 10.1021/acscentsci.0c01193. Epub 2021 Jan 13.
5
Chemical modifications of tryptophan residues in peptides and proteins.
J Pept Sci. 2021 Jan;27(1):e3286. doi: 10.1002/psc.3286. Epub 2020 Sep 17.
6
The nucleolus as a multiphase liquid condensate.
Nat Rev Mol Cell Biol. 2021 Mar;22(3):165-182. doi: 10.1038/s41580-020-0272-6. Epub 2020 Sep 1.
7
Selective Modification of Tryptophan Residues in Peptides and Proteins Using a Biomimetic Electron Transfer Process.
J Am Chem Soc. 2020 May 20;142(20):9112-9118. doi: 10.1021/jacs.0c03039. Epub 2020 May 5.
8
Biomolecular Phase Separation: From Molecular Driving Forces to Macroscopic Properties.
Annu Rev Phys Chem. 2020 Apr 20;71:53-75. doi: 10.1146/annurev-physchem-071819-113553.
9
Systematic identification of engineered methionines and oxaziridines for efficient, stable, and site-specific antibody bioconjugation.
Proc Natl Acad Sci U S A. 2020 Mar 17;117(11):5733-5740. doi: 10.1073/pnas.1920561117. Epub 2020 Mar 2.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验