Suppr超能文献

通过求解学习势能的最小成本流来准确预测包括假结在内的 RNA 二级结构。

Accurate prediction of RNA secondary structure including pseudoknots through solving minimum-cost flow with learned potentials.

机构信息

Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, 100190, Beijing, China.

University of Chinese Academy of Sciences, 100190, Beijing, China.

出版信息

Commun Biol. 2024 Mar 9;7(1):297. doi: 10.1038/s42003-024-05952-w.

Abstract

Pseudoknots are key structure motifs of RNA and pseudoknotted RNAs play important roles in a variety of biological processes. Here, we present KnotFold, an accurate approach to the prediction of RNA secondary structure including pseudoknots. The key elements of KnotFold include a learned potential function and a minimum-cost flow algorithm to find the secondary structure with the lowest potential. KnotFold learns the potential from the RNAs with known structures using an attention-based neural network, thus avoiding the inaccuracy of hand-crafted energy functions. The specially designed minimum-cost flow algorithm used by KnotFold considers all possible combinations of base pairs and selects from them the optimal combination. The algorithm breaks the restriction of nested base pairs required by the widely used dynamic programming algorithms, thus enabling the identification of pseudoknots. Using 1,009 pseudoknotted RNAs as representatives, we demonstrate the successful application of KnotFold in predicting RNA secondary structures including pseudoknots with accuracy higher than the state-of-the-art approaches. We anticipate that KnotFold, with its superior accuracy, will greatly facilitate the understanding of RNA structures and functionalities.

摘要

假结是 RNA 的关键结构基序,假结 RNA 在多种生物过程中发挥着重要作用。在这里,我们提出了 KnotFold,这是一种准确预测包括假结在内的 RNA 二级结构的方法。KnotFold 的关键要素包括一个学习的势能函数和一个最小成本流算法,以找到具有最低势能的二级结构。KnotFold 使用基于注意力的神经网络从具有已知结构的 RNA 中学习势能,从而避免了手工制作能量函数的不准确性。KnotFold 使用的专门设计的最小成本流算法考虑了碱基对的所有可能组合,并从中选择最佳组合。该算法打破了广泛使用的动态规划算法所需的嵌套碱基对的限制,从而能够识别假结。使用 1009 个假结 RNA 作为代表,我们证明了 KnotFold 在预测包括假结在内的 RNA 二级结构方面的成功应用,其准确性高于最先进的方法。我们预计,KnotFold 凭借其卓越的准确性,将极大地促进对 RNA 结构和功能的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df25/10924946/e4c0b5b129c2/42003_2024_5952_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验