School of Nano Science, Central University of Gujarat, Gandhinagar 382030, India.
School of Life Science, Central University of Gujarat, Gandhinagar 382030, India.
Int J Biol Macromol. 2024 Apr;264(Pt 2):130679. doi: 10.1016/j.ijbiomac.2024.130679. Epub 2024 Mar 9.
Breast cancer is a major cause of death in women worldwide leading to requirement of new therapeutic strategies. Silymarin demonstrated the anti-cancer activity however, due to low bioavailability its use is restricted. This study aimed to improve the solubility of silymarin by developing a silymarin loaded zein nanoparticles (SLNPs) which was stabilized by beta cyclodextrin. Comprehensive physiochemical characterization studies based on DLS, FTIR, UV-Vis Spectroscopy, FE-SEM, TEM, XRD, DSC, NMR and TGA confirmed the successful synthesis of SLNPs via an anti-solvent precipitation method. FE-SEM and TEM images demonstrated the uniform size and spherical shape of nanoparticles with encapsulation and loading efficiencies of 84.32 ± 1.9 % and 15.25 ± 2.4 % respectively. The zein protein interaction with silymarin, and β-cyclodextrin was shown to be beneficial via the use of molecular simulations and binding energy calculations. Cellular studies demonstrated dose and time dependent cytotoxicity of SLNPs on MCF-7 breast cancer cell. FACS, qRT-PCR and Western blotting showed Bax (pro-apoptotic) upregulation while Bcl-2 (anti-apoptotic) downregulation. Our findings suggest that these loaded nanoparticles are more efficient than pure drug, enhancing its bioavailability and paving the path for developing it as a promising nutraceutical to treat breast cancer.
乳腺癌是全球女性死亡的主要原因之一,因此需要新的治疗策略。水飞蓟素显示出抗癌活性,但由于其生物利用度低,其应用受到限制。本研究旨在通过开发由β-环糊精稳定的水飞蓟素载米诺环素纳米粒(SLNPs)来提高水飞蓟素的溶解度。基于 DLS、FTIR、UV-Vis 光谱、FE-SEM、TEM、XRD、DSC、NMR 和 TGA 的综合物理化学特性研究证实,通过反溶剂沉淀法成功合成了 SLNPs。FE-SEM 和 TEM 图像表明纳米粒具有均匀的尺寸和球形形状,包封效率和载药效率分别为 84.32±1.9%和 15.25±2.4%。通过分子模拟和结合能计算,表明水飞蓟素与 zein 蛋白和β-环糊精的相互作用是有益的。细胞研究表明,SLNPs 对 MCF-7 乳腺癌细胞具有剂量和时间依赖性的细胞毒性。FACS、qRT-PCR 和 Western blotting 显示 Bax(促凋亡)上调,而 Bcl-2(抗凋亡)下调。我们的研究结果表明,这些负载的纳米粒比纯药物更有效,提高了其生物利用度,为开发其作为治疗乳腺癌的有前途的营养保健品铺平了道路。