Suppr超能文献

解读蛋白质靶点词汇表:人工智能时代多方面药物发现综述

Deciphering the Lexicon of Protein Targets: A Review on Multifaceted Drug Discovery in the Era of Artificial Intelligence.

作者信息

Nandi Suvendu, Bhaduri Soumyadeep, Das Debraj, Ghosh Priya, Mandal Mahitosh, Mitra Pralay

机构信息

School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.

Centre for Computational and Data Sciences, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.

出版信息

Mol Pharm. 2024 Apr 1;21(4):1563-1590. doi: 10.1021/acs.molpharmaceut.3c01161. Epub 2024 Mar 11.

Abstract

Understanding protein sequence and structure is essential for understanding protein-protein interactions (PPIs), which are essential for many biological processes and diseases. Targeting protein binding hot spots, which regulate signaling and growth, with rational drug design is promising. Rational drug design uses structural data and computational tools to study protein binding sites and protein interfaces to design inhibitors that can change these interactions, thereby potentially leading to therapeutic approaches. Artificial intelligence (AI), such as machine learning (ML) and deep learning (DL), has advanced drug discovery and design by providing computational resources and methods. Quantum chemistry is essential for drug reactivity, toxicology, drug screening, and quantitative structure-activity relationship (QSAR) properties. This review discusses the methodologies and challenges of identifying and characterizing hot spots and binding sites. It also explores the strategies and applications of artificial-intelligence-based rational drug design technologies that target proteins and protein-protein interaction (PPI) binding hot spots. It provides valuable insights for drug design with therapeutic implications. We have also demonstrated the pathological conditions of heat shock protein 27 (HSP27) and matrix metallopoproteinases (MMP2 and MMP9) and designed inhibitors of these proteins using the drug discovery paradigm in a case study on the discovery of drug molecules for cancer treatment. Additionally, the implications of benzothiazole derivatives for anticancer drug design and discovery are deliberated.

摘要

理解蛋白质序列和结构对于理解蛋白质-蛋白质相互作用(PPI)至关重要,而蛋白质-蛋白质相互作用对于许多生物过程和疾病来说都是必不可少的。通过合理药物设计靶向调节信号传导和生长的蛋白质结合热点很有前景。合理药物设计利用结构数据和计算工具来研究蛋白质结合位点和蛋白质界面,以设计能够改变这些相互作用的抑制剂,从而有可能带来治疗方法。人工智能(AI),如机器学习(ML)和深度学习(DL),通过提供计算资源和方法推动了药物发现和设计。量子化学对于药物反应性、毒理学、药物筛选以及定量构效关系(QSAR)性质至关重要。本综述讨论了识别和表征热点及结合位点的方法和挑战。它还探讨了针对蛋白质和蛋白质-蛋白质相互作用(PPI)结合热点的基于人工智能的合理药物设计技术的策略和应用。它为具有治疗意义的药物设计提供了有价值的见解。在一个关于癌症治疗药物分子发现的案例研究中,我们还展示了热休克蛋白27(HSP27)和基质金属蛋白酶(MMP2和MMP9)的病理状况,并使用药物发现范式设计了这些蛋白质的抑制剂。此外,还讨论了苯并噻唑衍生物在抗癌药物设计和发现中的意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验