Suppr超能文献

药物组合的双向药效学建模及其在重新利用的埃博拉病毒和 SARS-CoV-2 药物对中的应用。

Two-way pharmacodynamic modeling of drug combinations and its application to pairs of repurposed Ebola and SARS-CoV-2 agents.

机构信息

Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA.

Department of Microbiology, University of Virginia, Charlottesville, Virginia, USA.

出版信息

Antimicrob Agents Chemother. 2024 Apr 3;68(4):e0101523. doi: 10.1128/aac.01015-23. Epub 2024 Mar 12.

Abstract

Existing pharmacodynamic (PD) mathematical models for drug combinations discriminate antagonistic, additive, multiplicative, and synergistic effects, but fail to consider how concentration-dependent drug interaction effects may vary across an entire dose-response matrix. We developed a two-way pharmacodynamic (TWPD) model to capture the PD of two-drug combinations. TWPD captures interactions between upstream and downstream drugs that act on different stages of viral replication, by quantifying upstream drug efficacy and concentration-dependent effects on downstream drug pharmacodynamic parameters. We applied TWPD to previously published drug matrixes for repurposed potential anti-Ebola and anti-SARS-CoV-2 drug pairs. Depending on the drug pairing, the model recapitulated combined efficacies as or more accurately than existing models and can be used to infer efficacy at untested drug concentrations. TWPD fits the data slightly better in one direction for all drug pairs, meaning that we can tentatively infer the upstream drug. Based on its high accuracy, TWPD could be used in concert with PK models to estimate the therapeutic effects of drug pairs .

摘要

现有的药物相互作用药效学(PD)数学模型可区分拮抗、相加、相乘和协同作用,但未能考虑浓度依赖性药物相互作用效应如何在整个剂量反应矩阵中变化。我们开发了一种双向药效学(TWPD)模型来捕捉两种药物组合的 PD。TWPD 通过量化上游药物的功效和对下游药物药效学参数的浓度依赖性影响,捕捉作用于病毒复制不同阶段的上游和下游药物之间的相互作用。我们将 TWPD 应用于之前发表的用于重新利用的潜在抗埃博拉和抗 SARS-CoV-2 药物对的药物矩阵。根据药物配对的不同,该模型再现了联合疗效,与现有模型一样或更准确,并且可以用于推断未测试药物浓度下的疗效。对于所有药物对,TWPD 在一个方向上对数据的拟合稍好,这意味着我们可以初步推断上游药物。基于其高精度,TWPD 可以与 PK 模型一起用于估计药物对的治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9c2/10989026/64da5736a61f/aac.01015-23.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验