Suppr超能文献

构建具有优异 PEC 水净化性能的核壳结构 CoO-MnWO 复合光电极。

Constructing core-shell structured CoO-MnWO composite photoelectrode with superior PEC water purification performance.

机构信息

School of Light Industry & Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian, 116034, PR China.

School of Light Industry & Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian, 116034, PR China.

出版信息

Chemosphere. 2024 Apr;354:141648. doi: 10.1016/j.chemosphere.2024.141648. Epub 2024 Mar 11.

Abstract

Semiconductor photoelectrocatalytic (PEC) technology is one of the most effective methods for removing organic pollutants from wastewater in advanced oxidation processes(AOPs). The selection of suitable semiconductor materials as photoanodes is a crucial factor for achieving superior PEC performance. Here, a core-shell structured CoO-MnWO architecture is created by enveloping MnWO nanoparticles onto the surface of CoO nanowires through a two-step hydrothermal process. The optimized CoO-MnWO-5 photoelectrode showed superior PEC degradation efficiency for KN-R (∼91.2% in 2 h) and durable stability (the accelerated lifetime reached ∼9100 s at a current density of 50 mA cm). Three actual wastewaters were also collected to verify the practical applicability of the photoelectrode.The energy consumption was measured at 4.48 kWhm, with a COD removal efficiency of 83% and a decolorization rate of 98%. These results demonstrate the excellent performance and promising application of the photoelectrode. The enhancement of PEC performance for the core-shell structured Co3O4-MnWO4 architecture can be attributed to the suitable energy band structure of the Co3O4-MnWO4 composite, higher OEP, larger electrochemical active surface area, accelerated transport of interface carriers, and lower charge transfer resistance. The energy band structure of the Co3O4-MnWO4 composite showed a strong redox ability to induce electrons/holes (e-/h+), which enhances the generation of intermediate active species (hydroxyl radical ·OH and superoxide radicals ·O2-). Therefore, the rationally designed core-shell structured Co3O4-MnWO4 architecture exhibited excellent practical applicability in the degradation of organic pollutants.

摘要

半导体光电催化(PEC)技术是高级氧化工艺(AOPs)中去除废水中有机污染物最有效的方法之一。选择合适的半导体材料作为光阳极是实现优异 PEC 性能的关键因素。在这里,通过两步水热法在 CoO 纳米线上包覆 MnWO 纳米颗粒,构建了 CoO-MnWO 核壳结构。优化后的 CoO-MnWO-5 光电极对 KN-R(2 h 内约 91.2%)具有优异的 PEC 降解效率和持久稳定性(在 50 mA cm 的电流密度下,加速寿命达到约 9100 s)。还收集了三种实际废水来验证光电极的实际适用性。能耗为 4.48 kWh m,COD 去除率为 83%,脱色率为 98%。这些结果表明了光电极的优异性能和广阔的应用前景。核壳结构的 Co3O4-MnWO4 架构的 PEC 性能增强归因于 Co3O4-MnWO4 复合材料的合适能带结构、更高的 OEP、更大的电化学活性表面积、界面载流子的加速传输以及更低的电荷转移电阻。Co3O4-MnWO4 复合材料的能带结构表现出较强的氧化还原能力,可诱导电子/空穴(e-/h+),从而增强中间活性物质(羟基自由基·OH 和超氧自由基·O2-)的生成。因此,合理设计的 Co3O4-MnWO4 核壳结构在有机污染物的降解方面表现出优异的实际适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验