Suppr超能文献

精准精神病学:预测可预测性。

Precision psychiatry: predicting predictability.

机构信息

Department of Psychiatry and University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands.

Department of Neurology, UZ Brussel and Vrije Universiteit Brussel, Brussels, Belgium.

出版信息

Psychol Med. 2024 Jun;54(8):1500-1509. doi: 10.1017/S0033291724000370. Epub 2024 Mar 18.

Abstract

Precision psychiatry is an emerging field that aims to provide individualized approaches to mental health care. An important strategy to achieve this precision is to reduce uncertainty about prognosis and treatment response. Multivariate analysis and machine learning are used to create outcome prediction models based on clinical data such as demographics, symptom assessments, genetic information, and brain imaging. While much emphasis has been placed on technical innovation, the complex and varied nature of mental health presents significant challenges to the successful implementation of these models. From this perspective, I review ten challenges in the field of precision psychiatry, including the need for studies on real-world populations and realistic clinical outcome definitions, and consideration of treatment-related factors such as placebo effects and non-adherence to prescriptions. Fairness, prospective validation in comparison to current practice and implementation studies of prediction models are other key issues that are currently understudied. A shift is proposed from retrospective studies based on linear and static concepts of disease towards prospective research that considers the importance of contextual factors and the dynamic and complex nature of mental health.

摘要

精准精神病学是一个新兴领域,旨在为精神卫生保健提供个性化的方法。实现这一精准度的一个重要策略是减少预后和治疗反应的不确定性。多变量分析和机器学习被用于根据人口统计学、症状评估、遗传信息和脑成像等临床数据创建结果预测模型。尽管人们非常重视技术创新,但心理健康的复杂性和多样性对这些模型的成功实施带来了重大挑战。从这个角度来看,我回顾了精准精神病学领域的十个挑战,包括需要对真实人群进行研究和对现实临床结果定义进行考虑,以及考虑治疗相关因素,如安慰剂效应和不遵守处方。公平性、与当前实践的前瞻性验证以及预测模型的实施研究是目前研究不足的其他关键问题。建议从基于疾病线性和静态概念的回顾性研究转向前瞻性研究,前瞻性研究考虑到了上下文因素以及心理健康的动态和复杂性的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验