Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, VA 23284, USA.
Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23284, USA.
Curr Oncol. 2024 Feb 20;31(3):1129-1144. doi: 10.3390/curroncol31030084.
Examining lung cancer (LC) cases in Virginia (VA) is essential due to its significant public health implications. By studying demographic, environmental, and socioeconomic variables, this paper aims to provide insights into the underlying drivers of LC prevalence in the state adjusted for spatial associations at the zipcode level.
We model the available VA zipcode-level LC counts via (spatial) Poisson and negative binomial regression models, taking into account missing covariate data, zipcode-level spatial association and allow for overdispersion. Under latent Gaussian Markov Random Field (GMRF) assumptions, our Bayesian hierarchical model powered by Integrated Nested Laplace Approximation (INLA) considers simultaneous (spatial) imputation of all missing covariates through elegant prediction. The spatial random effect across zip codes follows a Conditional Autoregressive (CAR) prior.
Zip codes with elevated smoking indices demonstrated a corresponding increase in LC counts, underscoring the well-established connection between smoking and LC. Additionally, we observed a notable correlation between higher Social Deprivation Index (SDI) scores and increased LC counts, aligning with the prevalent pattern of heightened LC prevalence in regions characterized by lower income and education levels. On the demographic level, our findings indicated higher LC counts in zip codes with larger White and Black populations (with Whites having higher prevalence than Blacks), lower counts in zip codes with higher Hispanic populations (compared to non-Hispanics), and higher prevalence among women compared to men. Furthermore, zip codes with a larger population of elderly people (age ≥ 65 years) exhibited higher LC prevalence, consistent with established national patterns.
This comprehensive analysis contributes to our understanding of the complex interplay of demographic and socioeconomic factors influencing LC disparities in VA at the zip code level, providing valuable information for targeted public health interventions and resource allocation. Implementation code is available at GitHub.
由于肺癌(LC)对公众健康有重大影响,因此检查弗吉尼亚州(VA)的肺癌病例至关重要。通过研究人口统计学、环境和社会经济变量,本文旨在深入了解该州 LC 患病率的潜在驱动因素,并在邮政编码层面上对空间关联进行调整。
我们通过(空间)泊松和负二项回归模型对 VA 邮政编码级别的 LC 计数进行建模,考虑了缺失协变量数据、邮政编码级别的空间关联,并允许过度离散。在潜在高斯马尔可夫随机场(GMRF)假设下,我们的贝叶斯层次模型通过集成嵌套 Laplace 逼近(INLA)为所有缺失协变量提供了同时(空间)插补的功能,通过巧妙的预测来实现。邮政编码之间的空间随机效应遵循条件自回归(CAR)先验。
吸烟指数较高的邮政编码显示 LC 计数相应增加,这强调了吸烟与 LC 之间的既定联系。此外,我们观察到社会剥夺指数(SDI)得分较高的邮政编码与 LC 计数增加之间存在显著相关性,这与收入和教育水平较低的地区 LC 患病率升高的普遍模式一致。在人口统计学层面上,我们的发现表明,白人人口和黑人群体较多的邮政编码 LC 计数较高(白人的患病率高于黑人),西班牙裔人口较多的邮政编码 LC 计数较低(与非西班牙裔相比),女性的 LC 患病率高于男性。此外,人口中老年人(年龄≥65 岁)较多的邮政编码 LC 患病率较高,这与全国模式一致。
这项综合分析有助于我们了解人口统计学和社会经济因素在弗吉尼亚州邮政编码层面上影响 LC 差异的复杂相互作用,为有针对性的公共卫生干预和资源分配提供了有价值的信息。实施代码可在 GitHub 上获得。