Busarello Emma, Biancon Giulia, Cimignolo Ilaria, Lauria Fabio, Ibnat Zuhairia, Ramirez Christian, Tomè Gabriele, Ciuffreda Marianna, Bucciarelli Giorgia, Pilli Alessandro, Marino Stefano Maria, Bontempi Vittorio, Aass Kristin R, VanOudenhove Jennifer, Mione Maria Caterina, Standal Therese, Macchi Paolo, Viero Gabriella, Halene Stephanie, Tebaldi Toma
Laboratory of RNA and Disease Data Science, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy.
Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
bioRxiv. 2025 Feb 7:2024.03.08.584053. doi: 10.1101/2024.03.08.584053.
Single-cell technologies offer a unique opportunity to explore cellular heterogeneity in health and disease. However, reliable identification of cell types and states represents a bottleneck. Available databases and analysis tools employ dissimilar markers, leading to inconsistent annotations and poor interpretability. Furthermore, current tools focus mostly on physiological cell types, limiting their applicability to disease. We developed the Cell Marker Accordion, a user-friendly platform providing automatic annotation and unmatched biological interpretation of single-cell populations, based on consistency weighted markers. We validated our approach on multiple single-cell and spatial datasets from different human and murine tissues, improving annotation accuracy in all cases. Moreover, we show that the Cell Marker Accordion can identify disease-critical cells and pathological processes, extracting potential biomarkers in a wide variety of disease contexts. The breadth of these applications elevates the Cell Marker Accordion as a fast, flexible, faithful and standardized tool to annotate and interpret single-cell and spatial populations in studying physiology and disease.
单细胞技术为探索健康和疾病中的细胞异质性提供了独特的机会。然而,可靠地识别细胞类型和状态是一个瓶颈。现有的数据库和分析工具使用不同的标记物,导致注释不一致且可解释性差。此外,当前的工具大多关注生理细胞类型,限制了它们在疾病中的适用性。我们开发了细胞标记手风琴,这是一个用户友好的平台,基于一致性加权标记物对单细胞群体进行自动注释和无与伦比的生物学解释。我们在来自不同人类和小鼠组织的多个单细胞和空间数据集上验证了我们的方法,在所有情况下都提高了注释准确性。此外,我们表明细胞标记手风琴可以识别疾病关键细胞和病理过程,在各种疾病背景下提取潜在的生物标志物。这些应用的广度使细胞标记手风琴成为一种快速、灵活、可靠且标准化的工具,用于在研究生理学和疾病时注释和解释单细胞和空间群体。