Suppr超能文献

机器学习算法在代谢性减肥手术术后成功分类中的应用:一项综合研究。

Application of machine learning algorithms in classifying postoperative success in metabolic bariatric surgery: Acomprehensive study.

作者信息

Benítez-Andrades José Alberto, Prada-García Camino, García-Fernández Rubén, Ballesteros-Pomar María D, González-Alonso María-Inmaculada, Serrano-García Antonio

机构信息

SALBIS Research Group, Department of Electric, Systems and Automatics Engineering, Universidad de León, León, Spain.

Department of Preventive Medicine and Public Health, University of Valladolid, Valladolid, Spain.

出版信息

Digit Health. 2024 Mar 29;10:20552076241239274. doi: 10.1177/20552076241239274. eCollection 2024 Jan-Dec.

Abstract

OBJECTIVES

Metabolic bariatric surgery is a critical intervention for patients living with obesity and related health issues. Accurate classification and prediction of patient outcomes are vital for optimizing treatment strategies. This study presents a novel machine learning approach to classify patients in the context of metabolic bariatric surgery, providing insights into the efficacy of different models and variable types.

METHODS

Various machine learning models, including Gaussian Naive Bayes, Complement Naive Bayes, K-nearest neighbour, Decision Tree, K-nearest neighbour with RandomOverSampler, and K-nearest neighbour with SMOTE, were applied to a dataset of 73 patients. The dataset, comprising psychometric, socioeconomic, and analytical variables, was analyzed to determine the most efficient predictive model. The study also explored the impact of different variable groupings and oversampling techniques.

RESULTS

Experimental results indicate average accuracy values as high as 66.7% for the best model. Enhanced versions of K-nearest neighbour and Decision Tree, along with variations of K-nearest neighbour such as RandomOverSampler and SMOTE, yielded the best results.

CONCLUSIONS

The study unveils a promising avenue for classifying patients in the realm of metabolic bariatric surgery. The results underscore the importance of selecting appropriate variables and employing diverse approaches to achieve optimal performance. The developed system holds potential as a tool to assist healthcare professionals in decision-making, thereby enhancing metabolic bariatric surgery outcomes. These findings lay the groundwork for future collaboration between hospitals and healthcare entities to improve patient care through the utilization of machine learning algorithms. Moreover, the findings suggest room for improvement, potentially achievable with a larger dataset and careful parameter tuning.

摘要

目的

代谢性减肥手术对于肥胖及相关健康问题患者而言是一项关键干预措施。准确分类和预测患者预后对于优化治疗策略至关重要。本研究提出一种新颖的机器学习方法,用于在代谢性减肥手术背景下对患者进行分类,从而深入了解不同模型和变量类型的疗效。

方法

将多种机器学习模型,包括高斯朴素贝叶斯、互补朴素贝叶斯、K近邻、决策树、带随机过采样的K近邻以及带合成少数类过采样技术(SMOTE)的K近邻,应用于73例患者的数据集。对包含心理测量、社会经济和分析变量的数据集进行分析,以确定最有效的预测模型。该研究还探讨了不同变量分组和过采样技术的影响。

结果

实验结果表明,最佳模型的平均准确率高达66.7%。K近邻和决策树的增强版本,以及K近邻的变体如随机过采样和合成少数类过采样技术,取得了最佳结果。

结论

该研究揭示了在代谢性减肥手术领域对患者进行分类的一条有前景的途径。结果强调了选择合适变量和采用多种方法以实现最佳性能的重要性。所开发的系统有潜力作为一种工具来协助医疗保健专业人员进行决策,从而改善代谢性减肥手术的预后。这些发现为医院和医疗保健实体未来通过利用机器学习算法改善患者护理的合作奠定了基础。此外,研究结果表明仍有改进空间,可能通过更大的数据集和仔细的参数调整来实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f29/10981264/d173b156e3b5/10.1177_20552076241239274-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验