Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina- IBIMA Plataforma BIONAND. RICORS "Enfermedades inflamatorias", Málaga, Spain.
Allergy Unit, Hospital Regional Universitario de Málaga-HRUM, Málaga, Spain.
Drug Deliv Transl Res. 2024 Dec;14(12):3467-3476. doi: 10.1007/s13346-024-01575-0. Epub 2024 Apr 1.
Rapamycin is a potent immunosuppressive drug that has been recently proposed for a wide range of applications beyond its current clinical use. For some of these proposed applications, encapsulation in nanoparticles is key to ensure therapeutic efficacy and safety. In this work, we evaluate the effect of pore size on mesoporous silica nanoparticles (MSN) as rapamycin nanocarriers. The successful preparation of MSN with 4 different pore sizes was confirmed by dynamic light scattering, zeta potential, transmission electron microscopy and N adsorption. In these materials, rapamycin loading was pore size-dependent, with smaller pore MSN exhibiting greater loading capacity. Release studies showed sustained drug release from all MSN types, with larger pore MSN presenting faster release kinetics. In vitro experiments using the murine dendritic cell (DC) line model DC2.4 showed that pore size influenced the biological performance of MSN. MSN with smaller pore sizes presented larger nanoparticle uptake by DC2.4 cells, but were also associated with slightly larger cytotoxicity. Further evaluation of DC2.4 cells incubated with rapamycin-loaded MSN also demonstrated a significant effect of MSN pore size on their immunological response. Notably, the combination of rapamycin-loaded MSN with an inflammatory stimulus (lipopolysaccharide, LPS) led to changes in the expression of DC activation markers (CD40 and CD83) and in the production of the proinflammatory cytokine TNF-α compared to LPS-treated DC without nanoparticles. Smaller-pored MSN induced more substantial reductions in CD40 expression while eliciting increased CD83 expression, indicating potential immunomodulatory effects. These findings highlight the critical role of MSN pore size in modulating rapamycin loading, release kinetics, cellular uptake, and subsequent immunomodulatory responses.
雷帕霉素是一种强效的免疫抑制剂药物,最近被提议用于其目前临床应用之外的广泛应用。对于其中一些提议的应用,纳米颗粒包封是确保治疗效果和安全性的关键。在这项工作中,我们评估了孔径对雷帕霉素纳米载体介孔二氧化硅纳米颗粒(MSN)的影响。通过动态光散射、Zeta 电位、透射电子显微镜和 N 吸附,证实了具有 4 种不同孔径的 MSN 的成功制备。在这些材料中,雷帕霉素的负载量与孔径有关,较小孔径的 MSN 表现出更大的负载能力。释放研究表明,所有 MSN 类型都呈现出持续的药物释放,较大孔径的 MSN 呈现出更快的释放动力学。使用鼠树突状细胞(DC)系模型 DC2.4 进行的体外实验表明,孔径影响 MSN 的生物学性能。具有较小孔径的 MSN 被 DC2.4 细胞摄取的纳米颗粒更大,但也与稍大的细胞毒性相关。进一步评估与载雷帕霉素的 MSN 孵育的 DC2.4 细胞也表明 MSN 孔径对其免疫反应有显著影响。值得注意的是,与没有纳米颗粒的 LPS 处理的 DC 相比,载雷帕霉素的 MSN 与炎症刺激物(脂多糖,LPS)的组合导致 DC 激活标志物(CD40 和 CD83)的表达和促炎细胞因子 TNF-α的产生发生变化。较小孔径的 MSN 诱导 CD40 表达的更大程度降低,同时引发 CD83 表达的增加,表明可能具有免疫调节作用。这些发现强调了 MSN 孔径在调节雷帕霉素负载、释放动力学、细胞摄取以及随后的免疫调节反应方面的关键作用。