Suppr超能文献

基于最优传输度量的单细胞数据基因轨迹推断

Gene trajectory inference for single-cell data by optimal transport metrics.

作者信息

Qu Rihao, Cheng Xiuyuan, Sefik Esen, Stanley Iii Jay S, Landa Boris, Strino Francesco, Platt Sarah, Garritano James, Odell Ian D, Coifman Ronald, Flavell Richard A, Myung Peggy, Kluger Yuval

机构信息

Computational Biology & Bioinformatics Program, Yale University, New Haven, CT, USA.

Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.

出版信息

Nat Biotechnol. 2025 Feb;43(2):258-268. doi: 10.1038/s41587-024-02186-3. Epub 2024 Apr 5.

Abstract

Single-cell RNA sequencing has been widely used to investigate cell state transitions and gene dynamics of biological processes. Current strategies to infer the sequential dynamics of genes in a process typically rely on constructing cell pseudotime through cell trajectory inference. However, the presence of concurrent gene processes in the same group of cells and technical noise can obscure the true progression of the processes studied. To address this challenge, we present GeneTrajectory, an approach that identifies trajectories of genes rather than trajectories of cells. Specifically, optimal transport distances are calculated between gene distributions across the cell-cell graph to extract gene programs and define their gene pseudotemporal order. Here we demonstrate that GeneTrajectory accurately extracts progressive gene dynamics in myeloid lineage maturation. Moreover, we show that GeneTrajectory deconvolves key gene programs underlying mouse skin hair follicle dermal condensate differentiation that could not be resolved by cell trajectory approaches. GeneTrajectory facilitates the discovery of gene programs that control the changes and activities of biological processes.

摘要

单细胞RNA测序已被广泛用于研究生物过程中的细胞状态转变和基因动态。目前推断过程中基因序列动态的策略通常依赖于通过细胞轨迹推断构建细胞伪时间。然而,同一组细胞中并发基因过程的存在和技术噪声可能会掩盖所研究过程的真实进展。为应对这一挑战,我们提出了GeneTrajectory,一种识别基因轨迹而非细胞轨迹的方法。具体而言,计算细胞-细胞图上基因分布之间的最优传输距离,以提取基因程序并定义其基因伪时间顺序。在这里,我们证明GeneTrajectory能够准确提取髓系谱系成熟过程中的渐进基因动态。此外,我们表明GeneTrajectory能够解卷积小鼠皮肤毛囊真皮凝聚物分化背后的关键基因程序,而这些程序是细胞轨迹方法无法解析的。GeneTrajectory有助于发现控制生物过程变化和活动的基因程序。

相似文献

1
Gene trajectory inference for single-cell data by optimal transport metrics.
Nat Biotechnol. 2025 Feb;43(2):258-268. doi: 10.1038/s41587-024-02186-3. Epub 2024 Apr 5.
4
OneSC: a computational platform for recapitulating cell state transitions.
Bioinformatics. 2024 Nov 28;40(12). doi: 10.1093/bioinformatics/btae703.
5
scTsI: an effective two-stage imputation method for single-cell RNA-seq data.
Brief Bioinform. 2025 May 1;26(3). doi: 10.1093/bib/bbaf298.
6
Joint inference of cell lineage and mitochondrial evolution from single-cell sequencing data.
Bioinformatics. 2024 Jun 28;40(Suppl 1):i218-i227. doi: 10.1093/bioinformatics/btae231.
10
The Lived Experience of Autistic Adults in Employment: A Systematic Search and Synthesis.
Autism Adulthood. 2024 Dec 2;6(4):495-509. doi: 10.1089/aut.2022.0114. eCollection 2024 Dec.

引用本文的文献

1
Marker genes reveal dynamic features of cell evolving processes.
Bioinform Adv. 2025 Aug 5;5(1):vbaf185. doi: 10.1093/bioadv/vbaf185. eCollection 2025.
2
3
Cilta-cel salvages ide-cel failure in relapsed multiple myeloma by driving distinct immune responses.
medRxiv. 2025 Jul 11:2025.07.10.25331322. doi: 10.1101/2025.07.10.25331322.
6
Single-cell meta-analysis of T cells reveals clonal dynamics of response to checkpoint immunotherapy.
Cell Genom. 2025 May 14;5(5):100842. doi: 10.1016/j.xgen.2025.100842. Epub 2025 Apr 4.
8
Exploring structured molecular landscape from single-cell multi-omics data by an explainable multimodal model.
iScience. 2024 Nov 2;27(12):111131. doi: 10.1016/j.isci.2024.111131. eCollection 2024 Dec 20.
9

本文引用的文献

1
The origins of skin diversity: lessons from dermal fibroblasts.
Development. 2022 Dec 1;149(23). doi: 10.1242/dev.200298. Epub 2022 Nov 29.
2
Modular, cascade-like transcriptional program of regeneration in .
Elife. 2022 Aug 4;11:e80778. doi: 10.7554/eLife.80778.
3
Decomposing a deterministic path to mesenchymal niche formation by two intersecting morphogen gradients.
Dev Cell. 2022 Apr 25;57(8):1053-1067.e5. doi: 10.1016/j.devcel.2022.03.011. Epub 2022 Apr 13.
5
Optimal transport improves cell-cell similarity inference in single-cell omics data.
Bioinformatics. 2022 Apr 12;38(8):2169-2177. doi: 10.1093/bioinformatics/btac084.
6
SCOT: Single-Cell Multi-Omics Alignment with Optimal Transport.
J Comput Biol. 2022 Jan;29(1):3-18. doi: 10.1089/cmb.2021.0446.
7
CellRank for directed single-cell fate mapping.
Nat Methods. 2022 Feb;19(2):159-170. doi: 10.1038/s41592-021-01346-6. Epub 2022 Jan 13.
8
Optimal transport analysis reveals trajectories in steady-state systems.
PLoS Comput Biol. 2021 Dec 3;17(12):e1009466. doi: 10.1371/journal.pcbi.1009466. eCollection 2021 Dec.
9
NovoSpaRc: flexible spatial reconstruction of single-cell gene expression with optimal transport.
Nat Protoc. 2021 Sep;16(9):4177-4200. doi: 10.1038/s41596-021-00573-7. Epub 2021 Aug 4.
10
A detailed map of coupled circadian clock and cell cycle with qualitative dynamics validation.
BMC Bioinformatics. 2021 May 11;22(1):240. doi: 10.1186/s12859-021-04158-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验