Qu Rihao, Cheng Xiuyuan, Sefik Esen, Stanley Iii Jay S, Landa Boris, Strino Francesco, Platt Sarah, Garritano James, Odell Ian D, Coifman Ronald, Flavell Richard A, Myung Peggy, Kluger Yuval
Computational Biology & Bioinformatics Program, Yale University, New Haven, CT, USA.
Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
Nat Biotechnol. 2025 Feb;43(2):258-268. doi: 10.1038/s41587-024-02186-3. Epub 2024 Apr 5.
Single-cell RNA sequencing has been widely used to investigate cell state transitions and gene dynamics of biological processes. Current strategies to infer the sequential dynamics of genes in a process typically rely on constructing cell pseudotime through cell trajectory inference. However, the presence of concurrent gene processes in the same group of cells and technical noise can obscure the true progression of the processes studied. To address this challenge, we present GeneTrajectory, an approach that identifies trajectories of genes rather than trajectories of cells. Specifically, optimal transport distances are calculated between gene distributions across the cell-cell graph to extract gene programs and define their gene pseudotemporal order. Here we demonstrate that GeneTrajectory accurately extracts progressive gene dynamics in myeloid lineage maturation. Moreover, we show that GeneTrajectory deconvolves key gene programs underlying mouse skin hair follicle dermal condensate differentiation that could not be resolved by cell trajectory approaches. GeneTrajectory facilitates the discovery of gene programs that control the changes and activities of biological processes.
单细胞RNA测序已被广泛用于研究生物过程中的细胞状态转变和基因动态。目前推断过程中基因序列动态的策略通常依赖于通过细胞轨迹推断构建细胞伪时间。然而,同一组细胞中并发基因过程的存在和技术噪声可能会掩盖所研究过程的真实进展。为应对这一挑战,我们提出了GeneTrajectory,一种识别基因轨迹而非细胞轨迹的方法。具体而言,计算细胞-细胞图上基因分布之间的最优传输距离,以提取基因程序并定义其基因伪时间顺序。在这里,我们证明GeneTrajectory能够准确提取髓系谱系成熟过程中的渐进基因动态。此外,我们表明GeneTrajectory能够解卷积小鼠皮肤毛囊真皮凝聚物分化背后的关键基因程序,而这些程序是细胞轨迹方法无法解析的。GeneTrajectory有助于发现控制生物过程变化和活动的基因程序。