Suppr超能文献

德克萨斯州奥斯汀市新冠疫情之前及期间无桩电动滑板车出行时长分析:基于风险的时长模型分析

Durations of Dockless E-Scooter Trips Before and During the COVID-19 Pandemic in Austin, TX: An Analysis Using Hazard-Based Duration Models.

作者信息

Azimian Amin, Jiao Junfeng

机构信息

Urban Information Lab, University of Texas at Austin, Austin, TX.

出版信息

Transp Res Rec. 2023 Apr;2677(4):629-640. doi: 10.1177/03611981221138807. Epub 2023 Jan 6.

Abstract

The pandemic arising from the 2019 coronavirus disease has significantly affected all facets of human life across the world, including economies and transportation systems, thereby changing people's travel behaviors. This research was aimed at exploring the relationship between socio-economic factors and e-scooter trip durations before and during the pandemic. We developed a hazard-based duration approach and estimated multiple spatial and non-spatial models on the basis of 2019 and 2020 dockless e-scooter data collected from the City of Austin's Open Data Portal. The results indicated an overall increase in e-scooter trip durations after the pandemic. Moreover, analysis of variables revealed potential changes in users' behavior before and during the pandemic. In particular, whereas e-scooter trip durations were found to be positively associated with aggregate travel time to work before the pandemic, this trend was reversed during the pandemic. In addition, during the pandemic, e-scooter travel time was positively correlated with the ratio of individuals with bachelor's degrees or greater to those with associate degrees or lower. However, no specific pattern was observed before the pandemic. Lastly, the results showed the presence of disparities within the study area; therefore, it is vital to extend e-scooter service areas to cover underserved communities.

摘要

2019冠状病毒病引发的大流行对全球人类生活的各个方面都产生了重大影响,包括经济和交通系统,从而改变了人们的出行行为。本研究旨在探讨大流行之前和期间社会经济因素与电动滑板车出行时长之间的关系。我们开发了一种基于风险的时长方法,并基于从奥斯汀市开放数据门户收集的2019年和2020年无桩电动滑板车数据,估计了多个空间和非空间模型。结果表明,大流行后电动滑板车出行时长总体增加。此外,对变量的分析揭示了大流行之前和期间用户行为的潜在变化。特别是,虽然在大流行之前发现电动滑板车出行时长与总的上班出行时间呈正相关,但在大流行期间这种趋势发生了逆转。此外,在大流行期间,电动滑板车出行时间与拥有学士学位或更高学历的个体与拥有副学士学位或更低学历的个体的比例呈正相关。然而,在大流行之前没有观察到特定模式。最后,结果显示研究区域内存在差异;因此,扩大电动滑板车服务区域以覆盖服务不足的社区至关重要。

相似文献

2
Spatial associations of dockless shared e-scooter usage.
Transp Res D Transp Environ. 2020 Sep;86:102396. doi: 10.1016/j.trd.2020.102396. Epub 2020 Jul 2.
3
Uncovering the spatio-temporal impact of the COVID-19 pandemic on shared e-scooter usage: A spatial panel model.
Transp Res Interdiscip Perspect. 2023 Jul;20:100843. doi: 10.1016/j.trip.2023.100843. Epub 2023 May 17.
4
Understanding the Shared E-scooter Travels in Austin, TX.
ISPRS Int J Geoinf. 2020 Feb;9(2). doi: 10.3390/ijgi9020135. Epub 2020 Feb 24.
5
Shared E-Scooter Trajectory Analysis During the COVID-19 Pandemic in Austin, Texas.
Transp Res Rec. 2023 Apr;2677(4):432-447. doi: 10.1177/03611981221083306. Epub 2022 Mar 24.
6
Injury rates per mile of travel for electric scooters versus motor vehicles.
Am J Emerg Med. 2021 Feb;40:166-168. doi: 10.1016/j.ajem.2020.10.048. Epub 2020 Oct 27.
7
Modeling factors contributing to dockless e-scooter injury accidents in Austin, Texas.
Traffic Inj Prev. 2022;23(2):107-111. doi: 10.1080/15389588.2022.2030057. Epub 2022 Feb 4.
8
What factors contribute to e-scooter crashes: A first look using a naturalistic riding approach.
J Safety Res. 2023 Jun;85:182-191. doi: 10.1016/j.jsr.2023.02.002. Epub 2023 Feb 10.
9
Comparison of motor-vehicle involved e-scooter fatalities with other traffic fatalities.
J Safety Res. 2023 Feb;84:61-73. doi: 10.1016/j.jsr.2022.10.008. Epub 2022 Oct 28.
10
The characteristics of dockless electric rental scooter-related injuries in a large U.S. city.
Traffic Inj Prev. 2020;21(7):476-481. doi: 10.1080/15389588.2020.1804059. Epub 2020 Aug 12.

引用本文的文献

1
Uncovering the spatio-temporal impact of the COVID-19 pandemic on shared e-scooter usage: A spatial panel model.
Transp Res Interdiscip Perspect. 2023 Jul;20:100843. doi: 10.1016/j.trip.2023.100843. Epub 2023 May 17.
2
Disparities in the Impacts of the COVID-19 Pandemic on Public Transit Ridership in Austin, Texas, U.S.A.
Transp Res Rec. 2023 Apr;2677(4):287-297. doi: 10.1177/03611981231159906. Epub 2023 Apr 11.

本文引用的文献

1
Understanding the Shared E-scooter Travels in Austin, TX.
ISPRS Int J Geoinf. 2020 Feb;9(2). doi: 10.3390/ijgi9020135. Epub 2020 Feb 24.
2
Impact of COVID-19 on Public Transit Accessibility and Ridership.
Transp Res Rec. 2023 Apr;2677(4):531-546. doi: 10.1177/03611981231160531. Epub 2023 Apr 15.
3
Longitudinal Analysis of COVID-19 Impacts on Mobility: An Early Snapshot of the Emerging Changes in Travel Behavior.
Transp Res Rec. 2023 Apr;2677(4):298-312. doi: 10.1177/03611981221090241. Epub 2022 Jul 2.
4
Measuring changes in travel behavior pattern due to COVID-19 in a developing country: A case study of Pakistan.
Transp Policy (Oxf). 2021 Jul;108:21-33. doi: 10.1016/j.tranpol.2021.04.023. Epub 2021 May 5.
5
COVID-19 and Public Transportation: Current Assessment, Prospects, and Research Needs.
J Public Trans. 2020 Jan;22(1):1-21. doi: 10.5038/2375-0901.22.1.1. Epub 2022 Sep 13.
7
Exploring the impacts of COVID-19 on travel behavior and mode preferences.
Transp Res Interdiscip Perspect. 2020 Nov;8:100255. doi: 10.1016/j.trip.2020.100255. Epub 2020 Nov 4.
8
Impacts of COVID-19 on public transport ridership in Sweden: Analysis of ticket validations, sales and passenger counts.
Transp Res Interdiscip Perspect. 2020 Nov;8:100242. doi: 10.1016/j.trip.2020.100242. Epub 2020 Oct 20.
9
How is COVID-19 reshaping activity-travel behavior? Evidence from a comprehensive survey in Chicago.
Transp Res Interdiscip Perspect. 2020 Sep;7:100216. doi: 10.1016/j.trip.2020.100216. Epub 2020 Sep 6.
10
COVID-19 and airline employment: Insights from historical uncertainty shocks to the industry.
Transp Res Interdiscip Perspect. 2020 May;5:100123. doi: 10.1016/j.trip.2020.100123. Epub 2020 May 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验