Suppr超能文献

ADC 磁共振成像与机器学习鉴别小儿低级别神经上皮肿瘤的多分子亚型

Identification of Multiclass Pediatric Low-Grade Neuroepithelial Tumor Molecular Subtype with ADC MR Imaging and Machine Learning.

机构信息

From the Department Diagnostic Imaging (M.D.S., B.B.E.-W., M.W.W.), Division of Neuroradiology, The Hospital for Sick Children, Toronto, Ontario, Canada

Department of Medical Imaging (M.D.S., K.N., F.K., B.B.E.-W., M.W.W.), University of Toronto, Toronto, Ontario, Canada.

出版信息

AJNR Am J Neuroradiol. 2024 Jun 7;45(6):753-760. doi: 10.3174/ajnr.A8199.

Abstract

BACKGROUND AND PURPOSE

Molecular biomarker identification increasingly influences the treatment planning of pediatric low-grade neuroepithelial tumors (PLGNTs). We aimed to develop and validate a radiomics-based ADC signature predictive of the molecular status of PLGNTs.

MATERIALS AND METHODS

In this retrospective bi-institutional study, we searched the PACS for baseline brain MRIs from children with PLGNTs. Semiautomated tumor segmentation on ADC maps was performed using the semiautomated level tracing effect tool with 3D Slicer. Clinical variables, including age, sex, and tumor location, were collected from chart review. The molecular status of tumors was derived from biopsy. Multiclass random forests were used to predict the molecular status and fine-tuned using a grid search on the validation sets. Models were evaluated using independent and unseen test sets based on the combined data, and the area under the receiver operating characteristic curve (AUC) was calculated for the prediction of 3 classes: fusion, V600E mutation, and non- cohorts. Experiments were repeated 100 times using different random data splits and model initializations to ensure reproducible results.

RESULTS

Two hundred ninety-nine children from the first institution and 23 children from the second institution were included (53.6% male; mean, age 8.01 years; 51.8% supratentorial; 52.2% with fusion). For the 3-class prediction using radiomics features only, the average test AUC was 0.74 (95% CI, 0.73-0.75), and using clinical features only, the average test AUC was 0.67 (95% CI, 0.66-0.68). The combination of both radiomics and clinical features improved the AUC to 0.77 (95% CI, 0.75-0.77). The diagnostic performance of the per-class test AUC was higher in identifying fusion tumors among the other subgroups (AUC = 0.81 for the combined radiomics and clinical features versus 0.75 and 0.74 for V600E mutation and non-, respectively).

CONCLUSIONS

ADC values of tumor segmentations have differentiative signals that can be used for training machine learning classifiers for molecular biomarker identification of PLGNTs. ADC-based pretherapeutic differentiation of the status of PLGNTs has the potential to avoid invasive tumor biopsy and enable earlier initiation of targeted therapy.

摘要

背景与目的

分子生物标志物的鉴定越来越影响小儿低级别神经上皮肿瘤(PLGNTs)的治疗计划。我们旨在开发和验证一种基于放射组学的 ADC 特征,以预测 PLGNTs 的分子状态。

材料与方法

在这项回顾性的、双机构的研究中,我们在 PACS 中搜索了小儿 PLGNTs 的基线脑部 MRI。使用 3D Slicer 的半自动水平跟踪效果工具对 ADC 图谱上的肿瘤进行半自动分割。从图表回顾中收集临床变量,包括年龄、性别和肿瘤位置。肿瘤的分子状态源自活检。使用多类随机森林来预测分子状态,并在验证集上使用网格搜索进行微调。使用基于组合数据的独立和未见测试集评估模型,并计算受试者工作特征曲线(ROC)下面积(AUC),以预测 3 个类别:融合、V600E 突变和非队列。使用不同的随机数据拆分和模型初始化重复了 100 次实验,以确保可重复的结果。

结果

来自第一家机构的 299 名儿童和第二家机构的 23 名儿童被纳入研究(53.6%为男性;平均年龄 8.01 岁;51.8%为幕上;52.2%有融合)。仅使用放射组学特征进行 3 类预测时,平均测试 AUC 为 0.74(95%CI,0.73-0.75),仅使用临床特征时,平均测试 AUC 为 0.67(95%CI,0.66-0.68)。放射组学和临床特征的结合将 AUC 提高到 0.77(95%CI,0.75-0.77)。在识别其他亚组中的融合肿瘤时,每组测试 AUC 的诊断性能更高(结合放射组学和临床特征的 AUC 为 0.81,而 V600E 突变和非融合的 AUC 分别为 0.75 和 0.74)。

结论

肿瘤分割的 ADC 值具有可区分的信号,可用于训练机器学习分类器以识别 PLGNTs 的分子生物标志物。基于 ADC 的 PLGNTs 状态的预治疗区分有可能避免侵入性肿瘤活检,并使靶向治疗更早开始。

相似文献

2
Radiomics of Pediatric Low-Grade Gliomas: Toward a Pretherapeutic Differentiation of Mutated and -Fused Tumors.
AJNR Am J Neuroradiol. 2021 Apr;42(4):759-765. doi: 10.3174/ajnr.A6998. Epub 2021 Feb 11.
3
Radiomics features based on MRI predict BRAF V600E mutation in pediatric low-grade gliomas: A non-invasive method for molecular diagnosis.
Clin Neurol Neurosurg. 2022 Nov;222:107478. doi: 10.1016/j.clineuro.2022.107478. Epub 2022 Oct 13.
5
Machine learning-based radiomics for predicting BRAF-V600E mutations in ameloblastoma.
Front Immunol. 2023 Aug 14;14:1180908. doi: 10.3389/fimmu.2023.1180908. eCollection 2023.
7
MR Imaging Characteristics and ADC Histogram Metrics for Differentiating Molecular Subgroups of Pediatric Low-Grade Gliomas.
AJNR Am J Neuroradiol. 2022 Sep;43(9):1356-1362. doi: 10.3174/ajnr.A7614. Epub 2022 Aug 25.
10
BRAF V600E mutations are frequent in dysembryoplastic neuroepithelial tumors and subependymal giant cell astrocytomas.
J Surg Oncol. 2015 Mar;111(3):359-64. doi: 10.1002/jso.23822. Epub 2014 Oct 24.

引用本文的文献

1
Radiogenomics: bridging the gap between imaging and genomics for precision oncology.
MedComm (2020). 2024 Sep 9;5(9):e722. doi: 10.1002/mco2.722. eCollection 2024 Sep.

本文引用的文献

1
Classification of low- and high-grade gliomas using radiomic analysis of multiple sequences of MRI brain.
J Cancer Res Ther. 2023 Jan-Mar;19(2):435-446. doi: 10.4103/jcrt.jcrt_1581_22.
2
Tackling Pediatric Low-Grade Gliomas: A Global Perspective.
JCO Glob Oncol. 2023 Apr;9:e2300017. doi: 10.1200/GO.23.00017.
3
Implications of BRAF V600E mutation in gliomas: Molecular considerations, prognostic value and treatment evolution.
Front Oncol. 2023 Jan 4;12:1067252. doi: 10.3389/fonc.2022.1067252. eCollection 2022.
4
Pediatric low-grade glioma: Targeted therapeutics and clinical trials in the molecular era.
Neoplasia. 2023 Feb;36:100857. doi: 10.1016/j.neo.2022.100857. Epub 2022 Dec 24.
5
Radiomics features based on MRI predict BRAF V600E mutation in pediatric low-grade gliomas: A non-invasive method for molecular diagnosis.
Clin Neurol Neurosurg. 2022 Nov;222:107478. doi: 10.1016/j.clineuro.2022.107478. Epub 2022 Oct 13.
7
MR Imaging Characteristics and ADC Histogram Metrics for Differentiating Molecular Subgroups of Pediatric Low-Grade Gliomas.
AJNR Am J Neuroradiol. 2022 Sep;43(9):1356-1362. doi: 10.3174/ajnr.A7614. Epub 2022 Aug 25.
9
Radiomics and radiogenomics in pediatric neuro-oncology: A review.
Neurooncol Adv. 2022 May 27;4(1):vdac083. doi: 10.1093/noajnl/vdac083. eCollection 2022 Jan-Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验