Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
Water Res. 2024 Jun 1;256:121602. doi: 10.1016/j.watres.2024.121602. Epub 2024 Apr 10.
Emerging microplastics-heavy metal (MPs-HM) contaminants in wastewaters pose an emerging health and environmental risk due to their persistence and increasing ecological risks (e.g., "Trojan horse" effect). Hence, removing MPs in solution and preventing secondary releases of HM has become a key challenge when tackling with MPs pollution. Leveraging the hydrophobic nature of MPs and the electron transfer efficiency from Fe to HM, we demonstrate an alkylated and sulfidated nanoscale zerovalent iron (AS-nZVI) featuring a delicate "core-shell-hydrophobic film" nanostructure. Exemplified by polystyrene (PS) MPs-Pb(II) removal, the three nanocomponents offer synergistic functions for the rapid separation of MPs, as well as the reduction and stabilization of Pb(II). The outmost hydrophobic film of AS-nZVI greatly improves the anticorrosion performance of nanoscale zerovalent iron and the enrichment abilities of hydrophobic MPs, achieving a maximum removal capacity of MPs to 2725.87 mg·g. This MPs enrichment promotes the subsequent reductive removal of Pb(II) through the electron transfer from the iron core of AS-nZVI to Pb(II), a process further strengthened by the introduced sulfur. When considering the inevitable aging of MPs in wastewaters due to mechanical wear or microbial degradation, our study concurrently examines the efficiencies and behaviors of AS-nZVI in removing virgin-MPs-Pb(II) and aged-MPs-Pb(II). The batch results reveal that AS-nZVI has an exceptional ability to remove above 99.6 % Pb(II) for all reaction systems. Overall, this work marks a pioneering effort in highlighting the importance of MPs-toxin combinations in dealing with MPs contamination and in demonstrating the utility of nZVI techniques for MPs-contaminated water purification.
废水中新兴的微塑料-重金属 (MPs-HM) 污染物由于其持久性和不断增加的生态风险(例如“特洛伊木马”效应),构成了新兴的健康和环境风险。因此,在处理 MPs 污染时,去除溶液中的 MPs 并防止 HM 的二次释放已成为一项关键挑战。利用 MPs 的疏水性和 Fe 向 HM 的电子转移效率,我们展示了一种具有精细“核壳-疏水性薄膜”纳米结构的烷基化和硫化纳米零价铁 (AS-nZVI)。以聚苯乙烯 (PS) MPs-Pb(II) 的去除为例,这三种纳米复合材料为 MPs 的快速分离以及 Pb(II) 的还原和稳定提供了协同功能。AS-nZVI 的最外层疏水性薄膜极大地提高了纳米零价铁的耐腐蚀性和疏水性 MPs 的富集能力,实现了 MPs 的最大去除容量为 2725.87mg·g。这种 MPs 的富集促进了随后通过 AS-nZVI 的铁核向 Pb(II) 的电子转移来还原去除 Pb(II),引入的硫进一步加强了这一过程。当考虑到废水中 MPs 由于机械磨损或微生物降解而不可避免的老化时,我们的研究同时考察了 AS-nZVI 在去除原始 MPs-Pb(II) 和老化 MPs-Pb(II) 方面的效率和行为。批量结果表明,对于所有反应系统,AS-nZVI 都具有去除超过 99.6% Pb(II) 的优异能力。总的来说,这项工作标志着在强调 MPs-毒素组合在处理 MPs 污染中的重要性以及展示 nZVI 技术在 MPs 污染水净化中的效用方面的开创性努力。