Suppr超能文献

通过酰胺酶 GatA250 对聚酯-聚亚安酯进行解聚,并使用角质酶 LCC 提高 4,4'-二氨基二苯甲烷的产量。

Depolymerization of the polyester-polyurethane by amidase GatA250 and enhancing the production of 4,4'-methylenedianiline with cutinase LCC.

机构信息

Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China.

Jiangsu National Synergetic Innovation Center, for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, P.R. China.

出版信息

Biotechnol J. 2024 Apr;19(4):e2300723. doi: 10.1002/biot.202300723.

Abstract

Polyurethane (PU) is a complex polymer synthesized from polyols and isocyanates. It contains urethane bonds that resist hydrolysis, which decreases the efficiency of biodegradation. In this study, we first expressed the amidase GatA250, and then, assessed the enzymatic characterization of GatA250 and its efficiency in degrading the polyester-PU. GatA250 degraded self-synthesized thermoplastic PU film and postconsumption foam with degradation efficiency of 8.17% and 4.29%, respectively. During the degradation, the film released 14.8 µm 4,4'-methylenedianiline (MDA), but 1,4-butanediol (BDO) and adipic acid (AA) were not released. Our findings indicated that GatA250 only cleaved urethane bonds in PU, and the degradation efficiency was extremely low. Hence, we introduced the cutinase LCC, which possesses hydrolytic activity on the ester bonds in PU, and then used both enzymes simultaneously to degrade the polyester-PU. The combined system (LCC-GatA250) had higher degradation efficiency for the degradation of PU film (42.2%) and foam (13.94%). The combined system also showed a 1.80 time increase in the production of the monomer MDA, and a 1.23 and 3.62 times increase in the production of AA and BDO, respectively, compared to their production recorded after treatment with only GatA250 or LCC. This study provides valuable insights into PU pollution control and also proposes applicable solutions to manage PU wastes through bio-recycling.

摘要

聚氨酯(PU)是一种由多元醇和异氰酸酯合成的复杂聚合物。它含有耐水解的氨酯键,这降低了其生物降解的效率。在本研究中,我们首先表达了酰胺酶 GatA250,然后评估了 GatA250 的酶学特性及其在聚酯-PU 降解中的效率。GatA250 降解了自合成的热塑性 PU 薄膜和消费后的泡沫,降解效率分别为 8.17%和 4.29%。在降解过程中,薄膜释放了 14.8µm 的 4,4'-亚甲基二苯胺(MDA),但没有释放 1,4-丁二醇(BDO)和己二酸(AA)。我们的研究结果表明,GatA250 仅能切割 PU 中的氨酯键,而且降解效率极低。因此,我们引入了具有酯键水解活性的角质酶 LCC,然后同时使用这两种酶来降解聚酯-PU。联合系统(LCC-GatA250)对 PU 薄膜(42.2%)和泡沫(13.94%)的降解效率更高。与单独使用 GatA250 或 LCC 相比,联合系统还分别将 MDA 单体的产量提高了 1.80 倍,将 AA 和 BDO 的产量分别提高了 1.23 倍和 3.62 倍。本研究为 PU 污染控制提供了有价值的见解,并提出了通过生物回收管理 PU 废物的可行解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验