Kong Fei, Wang Xiyue, Xiang Jinxi, Yang Sen, Wang Xinran, Yue Meng, Zhang Jun, Zhao Junhan, Han Xiao, Dong Yuhan, Zhu Biyue, Wang Fang, Liu Yueping
Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
Comput Struct Biotechnol J. 2024 Apr 5;23:1439-1449. doi: 10.1016/j.csbj.2024.03.028. eCollection 2024 Dec.
Artificial intelligence (AI) holds significant promise in transforming medical imaging, enhancing diagnostics, and refining treatment strategies. However, the reliance on extensive multicenter datasets for training AI models poses challenges due to privacy concerns. Federated learning provides a solution by facilitating collaborative model training across multiple centers without sharing raw data. This study introduces a federated attention-consistent learning (FACL) framework to address challenges associated with large-scale pathological images and data heterogeneity. FACL enhances model generalization by maximizing attention consistency between local clients and the server model. To ensure privacy and validate robustness, we incorporated differential privacy by introducing noise during parameter transfer. We assessed the effectiveness of FACL in cancer diagnosis and Gleason grading tasks using 19,461 whole-slide images of prostate cancer from multiple centers. In the diagnosis task, FACL achieved an area under the curve (AUC) of 0.9718, outperforming seven centers with an average AUC of 0.9499 when categories are relatively balanced. For the Gleason grading task, FACL attained a Kappa score of 0.8463, surpassing the average Kappa score of 0.7379 from six centers. In conclusion, FACL offers a robust, accurate, and cost-effective AI training model for prostate cancer pathology while maintaining effective data safeguards.
人工智能(AI)在变革医学成像、增强诊断和完善治疗策略方面具有巨大潜力。然而,由于隐私问题,依赖大量多中心数据集来训练AI模型带来了挑战。联邦学习通过促进跨多个中心的协作式模型训练而不共享原始数据提供了一种解决方案。本研究引入了一种联邦注意力一致学习(FACL)框架,以应对与大规模病理图像和数据异质性相关的挑战。FACL通过最大化本地客户端与服务器模型之间的注意力一致性来增强模型泛化能力。为确保隐私并验证鲁棒性,我们在参数传输过程中引入噪声来纳入差分隐私技术。我们使用来自多个中心的19461张前列腺癌全切片图像评估了FACL在癌症诊断和 Gleason分级任务中的有效性。在诊断任务中,FACL的曲线下面积(AUC)达到0.9718,在类别相对平衡时,优于七个中心平均AUC为0.9499的表现。对于Gleason分级任务,FACL获得了0.8463的Kappa分数超过了六个中心平均0.7379的Kappa分数结论是,FACL为前列腺癌病理学提供了一个强大、准确且具有成本效益的AI训练模型,同时保持有效的数据保护措施