Isangula Kahabi Ganka, Haule Rogers John
School of Nursing and Midwifery, Aga Khan University, Dar Es Salaam, United Republic of Tanzania.
JMIR Res Protoc. 2024 Apr 23;13:e54388. doi: 10.2196/54388.
Respiratory diseases, including active tuberculosis (TB), asthma, and chronic obstructive pulmonary disease (COPD), constitute substantial global health challenges, necessitating timely and accurate diagnosis for effective treatment and management.
This research seeks to develop and evaluate a noninvasive user-friendly artificial intelligence (AI)-powered cough audio classifier for detecting these respiratory conditions in rural Tanzania.
This is a nonexperimental cross-sectional research with the primary objective of collection and analysis of cough sounds from patients with active TB, asthma, and COPD in outpatient clinics to generate and evaluate a noninvasive cough audio classifier. Specialized cough sound recording devices, designed to be nonintrusive and user-friendly, will facilitate the collection of diverse cough sound samples from patients attending outpatient clinics in 20 health care facilities in the Shinyanga region. The collected cough sound data will undergo rigorous analysis, using advanced AI signal processing and machine learning techniques. By comparing acoustic features and patterns associated with TB, asthma, and COPD, a robust algorithm capable of automated disease discrimination will be generated facilitating the development of a smartphone-based cough sound classifier. The classifier will be evaluated against the calculated reference standards including clinical assessments, sputum smear, GeneXpert, chest x-ray, culture and sensitivity, spirometry and peak expiratory flow, and sensitivity and predictive values.
This research represents a vital step toward enhancing the diagnostic capabilities available in outpatient clinics, with the potential to revolutionize the field of respiratory disease diagnosis. Findings from the 4 phases of the study will be presented as descriptions supported by relevant images, tables, and figures. The anticipated outcome of this research is the creation of a reliable, noninvasive diagnostic cough classifier that empowers health care professionals and patients themselves to identify and differentiate these respiratory diseases based on cough sound patterns.
Cough sound classifiers use advanced technology for early detection and management of respiratory conditions, offering a less invasive and more efficient alternative to traditional diagnostics. This technology promises to ease public health burdens, improve patient outcomes, and enhance health care access in under-resourced areas, potentially transforming respiratory disease management globally.
INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/54388.
包括活动性肺结核(TB)、哮喘和慢性阻塞性肺疾病(COPD)在内的呼吸道疾病是全球重大的健康挑战,需要及时准确的诊断以进行有效的治疗和管理。
本研究旨在开发并评估一种无创且用户友好的人工智能(AI)驱动的咳嗽音频分类器,用于在坦桑尼亚农村地区检测这些呼吸道疾病。
这是一项非实验性横断面研究,主要目的是收集和分析门诊中活动性肺结核、哮喘和慢性阻塞性肺疾病患者的咳嗽声音,以生成并评估一种无创咳嗽音频分类器。专门设计的非侵入性且用户友好的咳嗽声音记录设备,将有助于从希尼安加地区20个医疗机构的门诊患者中收集多样的咳嗽声音样本。所收集的咳嗽声音数据将使用先进的AI信号处理和机器学习技术进行严格分析。通过比较与肺结核、哮喘和慢性阻塞性肺疾病相关的声学特征和模式,将生成一种能够自动进行疾病鉴别的强大算法,以促进基于智能手机的咳嗽声音分类器的开发。该分类器将根据计算出的参考标准进行评估,包括临床评估、痰涂片、GeneXpert、胸部X光、培养和药敏试验、肺功能测定和呼气峰值流速,以及敏感度和预测值。
本研究是朝着提高门诊可用诊断能力迈出的重要一步,有可能彻底改变呼吸道疾病诊断领域。研究4个阶段的结果将以相关图像、表格和图表支持的描述形式呈现。本研究的预期结果是创建一个可靠的无创诊断咳嗽分类器,使医疗保健专业人员和患者自身能够根据咳嗽声音模式识别和区分这些呼吸道疾病。
咳嗽声音分类器使用先进技术进行呼吸道疾病的早期检测和管理,为传统诊断提供了一种侵入性较小且效率更高的替代方法。这项技术有望减轻公共卫生负担,改善患者预后,并增加资源匮乏地区的医疗保健可及性,有可能在全球范围内改变呼吸道疾病的管理方式。
国际注册报告识别码(IRRID):PRR1-10.2196/54388。