Suppr超能文献

现在是加强政府-学术数据基础设施以启动未来公共卫生危机应对的时候了。

Now Is the Time to Strengthen Government-Academic Data Infrastructures to Jump-Start Future Public Health Crisis Response.

作者信息

Lee Jian-Sin, Tyler Allison R B, Veinot Tiffany Christine, Yakel Elizabeth

机构信息

School of Information, University of Michigan, Ann Arbor, MI, United States.

UK Data Archive, University of Essex, Colchester, United Kingdom.

出版信息

JMIR Public Health Surveill. 2024 Apr 24;10:e51880. doi: 10.2196/51880.

Abstract

During public health crises, the significance of rapid data sharing cannot be overstated. In attempts to accelerate COVID-19 pandemic responses, discussions within society and scholarly research have focused on data sharing among health care providers, across government departments at different levels, and on an international scale. A lesser-addressed yet equally important approach to sharing data during the COVID-19 pandemic and other crises involves cross-sector collaboration between government entities and academic researchers. Specifically, this refers to dedicated projects in which a government entity shares public health data with an academic research team for data analysis to receive data insights to inform policy. In this viewpoint, we identify and outline documented data sharing challenges in the context of COVID-19 and other public health crises, as well as broader crisis scenarios encompassing natural disasters and humanitarian emergencies. We then argue that government-academic data collaborations have the potential to alleviate these challenges, which should place them at the forefront of future research attention. In particular, for researchers, data collaborations with government entities should be considered part of the social infrastructure that bolsters their research efforts toward public health crisis response. Looking ahead, we propose a shift from ad hoc, intermittent collaborations to cultivating robust and enduring partnerships. Thus, we need to move beyond viewing government-academic data interactions as 1-time sharing events. Additionally, given the scarcity of scholarly exploration in this domain, we advocate for further investigation into the real-world practices and experiences related to sharing data from government sources with researchers during public health crises.

摘要

在公共卫生危机期间,快速数据共享的重要性怎么强调都不为过。为了加速应对新冠疫情,社会各界的讨论以及学术研究都聚焦于医疗服务提供者之间、各级政府部门之间以及国际层面的数据共享。在新冠疫情及其他危机期间,一种较少被提及但同样重要的数据共享方式是政府实体与学术研究人员之间的跨部门合作。具体而言,这指的是政府实体与学术研究团队共享公共卫生数据以进行数据分析,从而获得数据洞察以指导政策制定的专门项目。在本文观点中,我们识别并概述了在新冠疫情及其他公共卫生危机背景下,以及包括自然灾害和人道主义紧急情况在内的更广泛危机场景中的已记录数据共享挑战。然后我们认为,政府与学术机构的数据合作有潜力缓解这些挑战,这应使其成为未来研究关注的前沿。特别是对于研究人员来说,与政府实体的数据合作应被视为支持他们应对公共卫生危机研究工作的社会基础设施的一部分。展望未来,我们建议从临时、间歇性合作转向培养强大而持久的伙伴关系。因此,我们需要超越将政府与学术机构的数据互动视为一次性共享事件的观念。此外,鉴于该领域学术探索的匮乏,我们主张进一步研究在公共卫生危机期间与研究人员共享政府来源数据的实际做法和经验。

相似文献

4
Timely access to trial data in the context of a pandemic: the time is now.
BMJ Open. 2020 Oct 29;10(10):e039326. doi: 10.1136/bmjopen-2020-039326.
5
Government Information Dissemination During Public Health Emergencies: An Analysis of China's Experiences.
Front Public Health. 2022 Mar 22;10:748236. doi: 10.3389/fpubh.2022.748236. eCollection 2022.
7
China's Public Health Policies in Response to COVID-19: From an "Authoritarian" Perspective.
Front Public Health. 2021 Dec 15;9:756677. doi: 10.3389/fpubh.2021.756677. eCollection 2021.
8
Unconventional data, unprecedented insights: leveraging non-traditional data during a pandemic.
Front Public Health. 2024 Mar 7;12:1350743. doi: 10.3389/fpubh.2024.1350743. eCollection 2024.
9
African National Public Health Institutes Responses to COVID-19: Innovations, Systems Changes, and Challenges.
Health Secur. 2021 Sep-Oct;19(5):498-507. doi: 10.1089/hs.2021.0094. Epub 2021 Sep 8.

本文引用的文献

1
Data curation during a pandemic and lessons learned from COVID-19.
Nat Comput Sci. 2021 Jan;1(1):9-10. doi: 10.1038/s43588-020-00015-6.
4
Transforming Health Data to Actionable Information: Recent Progress and Future Opportunities in Health Information Exchange.
Yearb Med Inform. 2022 Aug;31(1):203-214. doi: 10.1055/s-0042-1742519. Epub 2022 Dec 4.
5
Local response in health emergencies: key considerations for COVID-19 in informal urban settlements.
Environ Urban. 2020 Oct;32(2):503-522. doi: 10.1177/0956247820922843. Epub 2020 May 5.
6
Data capture and sharing in the COVID-19 pandemic: a cause for concern.
Lancet Digit Health. 2022 Oct;4(10):e748-e756. doi: 10.1016/S2589-7500(22)00147-9.
7
The Impact of the COVID-19 Pandemic on Ethnic Minority Groups With Diabetes.
Diabetes Care. 2023 Feb 1;46(2):228-236. doi: 10.2337/dc21-2495.
8
Challenges of data sharing in European Covid-19 projects: A learning opportunity for advancing pandemic preparedness and response.
Lancet Reg Health Eur. 2022 Oct;21:100467. doi: 10.1016/j.lanepe.2022.100467. Epub 2022 Aug 4.
9
What is unique about learning health systems?
Learn Health Syst. 2022 Jul 15;6(3):e10328. doi: 10.1002/lrh2.10328. eCollection 2022 Jul.
10
How Can Information and Data Management Be Used to Address Global Health Crisis.
Data Inf Manag. 2020 Sep 1;4(3):127-129. doi: 10.2478/dim-2020-0018. Epub 2022 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验