Suppr超能文献

脂质纳米颗粒相关的炎症是由内体损伤的感知引发的:设计无副作用的内体逃逸。

Lipid Nanoparticle-Associated Inflammation is Triggered by Sensing of Endosomal Damage: Engineering Endosomal Escape Without Side Effects.

作者信息

Omo-Lamai Serena, Wang Yufei, Patel Manthan N, Essien Eno-Obong, Shen Mengwen, Majumdar Aparajeeta, Espy Carolann, Wu Jichuan, Channer Breana, Tobin Michael, Murali Shruthi, Papp Tyler E, Maheshwari Rhea, Wang Liuqian, Chase Liam S, Zamora Marco E, Arral Mariah L, Marcos-Contreras Oscar A, Myerson Jacob W, Hunter Christopher A, Tsourkas Andrew, Muzykantov Vladimir, Brodsky Igor, Shin Sunny, Whitehead Kathryn A, Gaskill Peter, Discher Dennis, Parhiz Hamideh, Brenner Jacob S

出版信息

bioRxiv. 2024 Apr 18:2024.04.16.589801. doi: 10.1101/2024.04.16.589801.

Abstract

Lipid nanoparticles (LNPs) have emerged as the dominant platform for RNA delivery, based on their success in the COVID-19 vaccines and late-stage clinical studies in other indications. However, we and others have shown that LNPs induce severe inflammation, and massively aggravate pre-existing inflammation. Here, using structure-function screening of lipids and analyses of signaling pathways, we elucidate the mechanisms of LNP-associated inflammation and demonstrate solutions. We show that LNPs' hallmark feature, endosomal escape, which is necessary for RNA expression, also directly triggers inflammation by causing endosomal membrane damage. Large, irreparable, endosomal holes are recognized by cytosolic proteins called galectins, which bind to sugars on the inner endosomal membrane and then regulate downstream inflammation. We find that inhibition of galectins abrogates LNP-associated inflammation, both and . We show that rapidly biodegradable ionizable lipids can preferentially create endosomal holes that are smaller in size and reparable by the endosomal sorting complex required for transport (ESCRT) pathway. Ionizable lipids producing such ESCRT-recruiting endosomal holes can produce high expression from cargo mRNA with minimal inflammation. Finally, we show that both routes to non-inflammatory LNPs, either galectin inhibition or ESCRT-recruiting ionizable lipids, are compatible with therapeutic mRNAs that ameliorate inflammation in disease models. LNPs without galectin inhibition or biodegradable ionizable lipids lead to severe exacerbation of inflammation in these models. In summary, endosomal escape induces endosomal membrane damage that can lead to inflammation. However, the inflammation can be controlled by inhibiting galectins (large hole detectors) or by using biodegradable lipids, which create smaller holes that are reparable by the ESCRT pathway. These strategies should lead to generally safer LNPs that can be used to treat inflammatory diseases.

摘要

基于脂质纳米颗粒(LNPs)在新冠疫苗中的成功应用以及在其他适应症上的晚期临床研究,它们已成为RNA递送的主要平台。然而,我们和其他人已经表明,LNPs会引发严重炎症,并极大地加剧先前存在的炎症。在这里,我们通过对脂质进行结构-功能筛选和信号通路分析,阐明了LNP相关炎症的机制并展示了解决方案。我们表明,LNPs的标志性特征——内体逃逸,这是RNA表达所必需的,也会通过导致内体膜损伤直接引发炎症。被称为半乳糖凝集素的胞质蛋白会识别大的、无法修复的内体孔,这些蛋白会与内体内膜上的糖类结合,然后调节下游炎症。我们发现抑制半乳糖凝集素可消除LNP相关的炎症,无论是在体内还是体外。我们表明,可快速生物降解的可电离脂质可以优先产生尺寸较小且可通过运输所需的内体分选复合物(ESCRT)途径修复的内体孔。产生这种招募ESCRT的内体孔的可电离脂质可以在炎症最小的情况下从货物mRNA产生高表达。最后,我们表明,通往无炎症LNPs的两条途径,即抑制半乳糖凝集素或使用招募ESCRT的可电离脂质,都与在疾病模型中减轻炎症的治疗性mRNA兼容。在这些模型中,没有抑制半乳糖凝集素或可生物降解可电离脂质的LNPs会导致炎症严重加剧。总之,内体逃逸会诱导内体膜损伤,进而导致炎症。然而,炎症可以通过抑制半乳糖凝集素(大孔检测器)或使用可生物降解脂质来控制,后者会产生较小的可通过ESCRT途径修复的孔。这些策略应该会带来更安全的LNPs,可用于治疗炎症性疾病。

相似文献

2
Nucleic Acid Nanocapsules as a New Platform to Deliver Therapeutic Nucleic Acids for Gene Regulation.
Acc Chem Res. 2025 Jul 1;58(13):1951-1962. doi: 10.1021/acs.accounts.5c00126. Epub 2025 Jun 9.
3
The kinetics of endosomal disruption reveal differences in lipid nanoparticle induced cellular toxicity.
J Control Release. 2025 Jul 18:114047. doi: 10.1016/j.jconrel.2025.114047.
4
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
7
A perspective on the apparent pKa of ionizable lipids in mRNA-LNPs.
J Control Release. 2025 Aug 10;384:113879. doi: 10.1016/j.jconrel.2025.113879. Epub 2025 May 21.
9
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
10
Cellular and biophysical barriers to lipid nanoparticle mediated delivery of RNA to the cytosol.
Nat Commun. 2025 Jul 1;16(1):5354. doi: 10.1038/s41467-025-60959-z.

引用本文的文献

1
Endosomal escape mechanisms of extracellular vesicle-based drug carriers: lessons for lipid nanoparticle design.
Extracell Vesicles Circ Nucl Acids. 2024 Jul 5;5(3):344-357. doi: 10.20517/evcna.2024.19. eCollection 2024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验