Suppr超能文献

CRIPSR 引导的 RNA 断裂修复可实现人类细胞中特定位点的 RNA 切除。

Repair of CRISPR-guided RNA breaks enables site-specific RNA excision in human cells.

机构信息

Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA.

出版信息

Science. 2024 May 17;384(6697):808-814. doi: 10.1126/science.adk5518. Epub 2024 Apr 25.

Abstract

Genome editing with CRISPR RNA-guided endonucleases generates DNA breaks that are resolved by cellular DNA repair machinery. However, analogous methods to manipulate RNA remain unavailable. We show that site-specific RNA breaks generated with type-III CRISPR complexes are repaired in human cells and that this repair can be used for programmable deletions in human transcripts to restore gene function. Collectively, this work establishes a technology for precise RNA manipulation with potential therapeutic applications.

摘要

利用 CRISPR RNA 引导的内切酶进行基因组编辑会产生 DNA 断裂,这些断裂由细胞 DNA 修复机制来解决。然而,类似的操纵 RNA 的方法仍然不可用。我们表明,使用 III 型 CRISPR 复合物产生的特异性 RNA 断裂在人类细胞中被修复,并且这种修复可用于人类转录本中的可编程缺失,以恢复基因功能。总的来说,这项工作为精确的 RNA 操作建立了一种技术,具有潜在的治疗应用。

相似文献

1
Repair of CRISPR-guided RNA breaks enables site-specific RNA excision in human cells.
Science. 2024 May 17;384(6697):808-814. doi: 10.1126/science.adk5518. Epub 2024 Apr 25.
2
Repair of CRISPR-guided RNA breaks enables site-specific RNA editing in human cells.
bioRxiv. 2023 Aug 29:2023.08.29.555404. doi: 10.1101/2023.08.29.555404.
3
Orthogonal transcriptional modulation and gene editing using multiple CRISPR-Cas systems.
Mol Ther. 2025 Jan 8;33(1):71-89. doi: 10.1016/j.ymthe.2024.11.024. Epub 2024 Nov 19.
4
Fitness effects of CRISPR endonucleases in populations.
Elife. 2022 Sep 22;11:e71809. doi: 10.7554/eLife.71809.
5
Rapid two-step target capture ensures efficient CRISPR-Cas9-guided genome editing.
Mol Cell. 2025 May 1;85(9):1730-1742.e9. doi: 10.1016/j.molcel.2025.03.024. Epub 2025 Apr 23.
6
Assessing and engineering the IscB-ωRNA system for programmed genome editing.
Nat Chem Biol. 2024 Dec;20(12):1617-1628. doi: 10.1038/s41589-024-01669-3. Epub 2024 Jul 8.
7
Modulating binding affinity of aptamer-based loading constructs enhances extracellular vesicle-mediated CRISPR/Cas9 delivery.
J Control Release. 2025 Aug 10;384:113853. doi: 10.1016/j.jconrel.2025.113853. Epub 2025 May 18.
8
Artificial Intelligence in CRISPR-Cas Systems: A Review of Tool Applications.
Methods Mol Biol. 2025;2952:243-257. doi: 10.1007/978-1-0716-4690-8_14.
10
Evolution of Prime Editing Systems: Move Forward to the Treatment of Hereditary Diseases.
Curr Gene Ther. 2024;25(1):46-61. doi: 10.2174/0115665232295117240405070809.

引用本文的文献

1
Histone Lactylation Antagonizes Senescence and Skeletal Muscle Aging by Modulating Aging-Related Pathways.
Adv Sci (Weinh). 2025 Jun;12(22):e2412747. doi: 10.1002/advs.202412747. Epub 2025 May 19.
2
CRISPR RNA binding drives structural ordering that primes Cas7-11 for target cleavage.
Nucleic Acids Res. 2025 Apr 10;53(7). doi: 10.1093/nar/gkaf271.
3
RNA damage and its implications in genome stability.
DNA Repair (Amst). 2025 Mar;147:103821. doi: 10.1016/j.dnarep.2025.103821. Epub 2025 Mar 1.
4
Single-molecule live-cell RNA imaging with CRISPR-Csm.
Nat Biotechnol. 2025 Feb 18. doi: 10.1038/s41587-024-02540-5.
5
CRISPR-Cas target recognition for sensing viral and cancer biomarkers.
Nucleic Acids Res. 2024 Sep 23;52(17):10040-10067. doi: 10.1093/nar/gkae736.
6
Single-molecule live-cell RNA imaging with CRISPR-Csm.
bioRxiv. 2024 Jul 16:2024.07.14.603457. doi: 10.1101/2024.07.14.603457.

本文引用的文献

1
Retention of the RNA ends provides the molecular memory for maintaining the activation of the Csm complex.
Nucleic Acids Res. 2024 Apr 24;52(7):3896-3910. doi: 10.1093/nar/gkae080.
2
CRISPR technologies for genome, epigenome and transcriptome editing.
Nat Rev Mol Cell Biol. 2024 Jun;25(6):464-487. doi: 10.1038/s41580-023-00697-6. Epub 2024 Feb 2.
3
Non-coding RNAs in disease: from mechanisms to therapeutics.
Nat Rev Genet. 2024 Mar;25(3):211-232. doi: 10.1038/s41576-023-00662-1. Epub 2023 Nov 15.
4
CRISPR-based engineering of RNA viruses.
Sci Adv. 2023 Sep 15;9(37):eadj8277. doi: 10.1126/sciadv.adj8277. Epub 2023 Sep 13.
5
Prediction of on-target and off-target activity of CRISPR-Cas13d guide RNAs using deep learning.
Nat Biotechnol. 2024 Apr;42(4):628-637. doi: 10.1038/s41587-023-01830-8. Epub 2023 Jul 3.
6
Chemoproteomic discovery of a human RNA ligase.
Nat Commun. 2023 Feb 15;14(1):842. doi: 10.1038/s41467-023-36451-x.
7
Precise transcript targeting by CRISPR-Csm complexes.
Nat Biotechnol. 2023 Sep;41(9):1256-1264. doi: 10.1038/s41587-022-01649-9. Epub 2023 Jan 23.
8
RNA targeting unleashes indiscriminate nuclease activity of CRISPR-Cas12a2.
Nature. 2023 Jan;613(7944):582-587. doi: 10.1038/s41586-022-05560-w. Epub 2023 Jan 4.
9
Cas12a2 elicits abortive infection through RNA-triggered destruction of dsDNA.
Nature. 2023 Jan;613(7944):588-594. doi: 10.1038/s41586-022-05559-3. Epub 2023 Jan 4.
10
Structure and engineering of the type III-E CRISPR-Cas7-11 effector complex.
Cell. 2022 Jun 23;185(13):2324-2337.e16. doi: 10.1016/j.cell.2022.05.003. Epub 2022 May 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验