Suppr超能文献

鉴定由种系和环境风险因素定义的癌症的体细胞指纹。

Identifying somatic fingerprints of cancers defined by germline and environmental risk factors.

机构信息

State University of New York at Buffalo, Buffalo, New York, USA.

Mass General Research Institute, Boston, Massachusetts, USA.

出版信息

Genet Epidemiol. 2024 Dec;48(8):455-467. doi: 10.1002/gepi.22565. Epub 2024 Apr 30.

Abstract

Numerous studies over the past generation have identified germline variants that increase specific cancer risks. Simultaneously, a revolution in sequencing technology has permitted high-throughput annotations of somatic genomes characterizing individual tumors. However, examining the relationship between germline variants and somatic alteration patterns is hugely challenged by the large numbers of variants in a typical tumor, the rarity of most individual variants, and the heterogeneity of tumor somatic fingerprints. In this article, we propose statistical methodology that frames the investigation of germline-somatic relationships in an interpretable manner. The method uses meta-features embodying biological contexts of individual somatic alterations to implicitly group rare mutations. Our team has used this technique previously through a multilevel regression model to diagnose with high accuracy tumor site of origin. Herein, we further leverage topic models from computational linguistics to achieve interpretable lower-dimensional embeddings of the meta-features. We demonstrate how the method can identify distinctive somatic profiles linked to specific germline variants or environmental risk factors. We illustrate the method using The Cancer Genome Atlas whole-exome sequencing data to characterize somatic tumor fingerprints in breast cancer patients with germline BRCA1/2 mutations and in head and neck cancer patients exposed to human papillomavirus.

摘要

在过去的几十年中,许多研究已经确定了增加特定癌症风险的种系变体。同时,测序技术的革命使得高通量注释体细胞基因组成为可能,这些基因组能够描述个体肿瘤。然而,由于典型肿瘤中存在大量的变体、大多数个体变体的稀有性以及肿瘤体细胞指纹的异质性,研究种系变体与体细胞改变模式之间的关系极具挑战性。在本文中,我们提出了一种统计方法,以可解释的方式构建种系-体细胞关系的研究。该方法使用体现个体体细胞改变生物学背景的元特征来隐式地对罕见突变进行分组。我们的团队之前曾使用这种技术通过多层次回归模型来高精度诊断肿瘤起源部位。在这里,我们进一步利用计算语言学中的主题模型来实现元特征的可解释低维嵌入。我们展示了该方法如何识别与特定种系变体或环境风险因素相关的独特体细胞谱。我们使用癌症基因组图谱全外显子测序数据来说明该方法,以描述具有种系 BRCA1/2 突变的乳腺癌患者和暴露于人乳头瘤病毒的头颈部癌症患者的体细胞肿瘤指纹。

相似文献

1
Identifying somatic fingerprints of cancers defined by germline and environmental risk factors.
Genet Epidemiol. 2024 Dec;48(8):455-467. doi: 10.1002/gepi.22565. Epub 2024 Apr 30.
2
Analysis of BRCA1/2 mutation spectrum and prevalence in unselected Chinese breast cancer patients by next-generation sequencing.
J Cancer Res Clin Oncol. 2017 Oct;143(10):2011-2024. doi: 10.1007/s00432-017-2465-8. Epub 2017 Jun 29.
3
Can a Liquid Biopsy Detect Circulating Tumor DNA With Low-passage Whole-genome Sequencing in Patients With a Sarcoma? A Pilot Evaluation.
Clin Orthop Relat Res. 2025 Jan 1;483(1):39-48. doi: 10.1097/CORR.0000000000003161. Epub 2024 Jun 21.
5
The role of multi-organ cancer predisposition genes in the risk of inherited and histologically diverse gastric cancer.
EBioMedicine. 2025 Jun;116:105759. doi: 10.1016/j.ebiom.2025.105759. Epub 2025 May 29.
6
Germline and tumor BRCA1/2 pathogenic variants in Chinese triple-negative breast carcinomas.
J Cancer Res Clin Oncol. 2021 Oct;147(10):2935-2944. doi: 10.1007/s00432-021-03696-2. Epub 2021 Jul 13.
7
Assessment of and Germline Variant Data From Patients With Breast Cancer in a Real-World Data Registry.
JCO Clin Cancer Inform. 2024 May;8:e2300251. doi: 10.1200/CCI.23.00251.
9
Los olvidados: Non-BRCA variants associated with Hereditary breast cancer in Mexican population.
Breast Cancer Res. 2025 Jan 15;27(1):7. doi: 10.1186/s13058-024-01957-9.
10
BRCA mutations and prostate cancer: should urologist improve daily clinical practice?
Arch Ital Urol Androl. 2025 Jun 30;97(2):13635. doi: 10.4081/aiua.2025.13635. Epub 2025 Apr 17.

本文引用的文献

2
Germline Cancer Gene Expression Quantitative Trait Loci Are Associated with Local and Global Tumor Mutations.
Cancer Res. 2023 Apr 14;83(8):1191-1202. doi: 10.1158/0008-5472.CAN-22-2624.
3
Unravelling the instability of mutational signatures extraction archetypal analysis.
Front Genet. 2023 Jan 4;13:1049501. doi: 10.3389/fgene.2022.1049501. eCollection 2022.
4
The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource.
Nucleic Acids Res. 2023 Jan 6;51(D1):D977-D985. doi: 10.1093/nar/gkac1010.
5
Common Germline Risk Variants Impact Somatic Alterations and Clinical Features across Cancers.
Cancer Res. 2023 Jan 4;83(1):20-27. doi: 10.1158/0008-5472.CAN-22-1492.
6
The impact of rare germline variants on human somatic mutation processes.
Nat Commun. 2022 Jun 28;13(1):3724. doi: 10.1038/s41467-022-31483-1.
7
Association between germline variants and somatic mutations in colorectal cancer.
Sci Rep. 2022 Jun 17;12(1):10207. doi: 10.1038/s41598-022-14408-2.
8
Signatures of copy number alterations in human cancer.
Nature. 2022 Jun;606(7916):984-991. doi: 10.1038/s41586-022-04738-6. Epub 2022 Jun 15.
9
SUITOR: Selecting the number of mutational signatures through cross-validation.
PLoS Comput Biol. 2022 Apr 4;18(4):e1009309. doi: 10.1371/journal.pcbi.1009309. eCollection 2022 Apr.
10
Somatic mutational profiles and germline polygenic risk scores in human cancer.
Genome Med. 2022 Feb 11;14(1):14. doi: 10.1186/s13073-022-01016-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验