Suppr超能文献

温和热疗辅助 GelMA/HA/MPDA@Roxadustat 3D 打印支架,兼具血管生成和成骨功能,可促进骨再生。

Mild Thermotherapy-Assisted GelMA/HA/MPDA@Roxadustat 3D-Printed Scaffolds with Combined Angiogenesis-Osteogenesis Functions for Bone Regeneration.

机构信息

Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China.

School of Stomatology, Jilin University, Changchun, Jilin, 130021, China.

出版信息

Adv Healthc Mater. 2024 Sep;13(22):e2400545. doi: 10.1002/adhm.202400545. Epub 2024 May 11.

Abstract

Early reconstruction of the vascular network is a prerequisite to the effective treatment of substantial bone defects. Traditional 3D printed tissue engineering scaffolds designed to repair large bone defects do not effectively regenerate the vascular network, and rely only on the porous structure within the scaffold for nutrient transfer and metabolic waste removal. This leads to delayed bone restoration and hence functional recovery. Therefore, strategies for generation scaffolds with the capacity to efficiently regenerate vascularization should be developed. This study loads roxarestat (RD), which can stabilize HIF-1α expression in a normoxic environment, onto the mesopore polydopamine nanoparticles (MPDA@RD) to enhance the reconstruction of vascular network in large bone defects. Subsequently, MPDA@RD is mixed with GelMA/HA hydrogel bioink to fabricate a multifunctional hydrogel scaffold (GHM@RD) through 3D printing. In vitro results show that the GHM@RD scaffolds achieve good angiogenic-osteogenic coupling by activating the PI3K/AKT/HSP90 pathway in BMSCs and the PI3K/AKT/HIF-1α pathway in HUVECs under mild thermotherapy. In vivo experiments reveal that RD and mild hyperthermia synergistically induce early vascularization and bone regeneration of critical bone defects. In conclusion, the designed GHM@RD drug delivery scaffold with mild hyperthermia holds great therapeutic value for future treatment of large bone defects.

摘要

早期重建血管网络是有效治疗大骨缺损的前提。传统的设计用于修复大骨缺损的 3D 打印组织工程支架不能有效地再生血管网络,只能依靠支架内的多孔结构进行营养物质转移和代谢废物清除。这导致骨修复延迟,从而影响功能恢复。因此,应开发能够有效再生血管化的支架生成策略。本研究将罗昔司特(RD)加载到介孔聚多巴胺纳米粒子(MPDA@RD)上,以稳定缺氧诱导因子-1α(HIF-1α)在常氧环境中的表达,从而增强大骨缺损中血管网络的重建。随后,将 MPDA@RD 与 GelMA/HA 水凝胶生物墨水混合,通过 3D 打印制备多功能水凝胶支架(GHM@RD)。体外结果表明,GHM@RD 支架通过在骨髓间充质干细胞中激活 PI3K/AKT/HSP90 通路和在人脐静脉内皮细胞(HUVECs)中激活 PI3K/AKT/HIF-1α 通路,实现了良好的血管生成-成骨偶联作用,在温和热疗下。体内实验表明,RD 和温和热疗协同诱导临界骨缺损的早期血管化和骨再生。总之,设计的具有温和热疗的 GHM@RD 药物输送支架对未来大骨缺损的治疗具有重要的治疗价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验