Suppr超能文献

从细胞系到癌症患者:个性化药物协同作用预测

From cell lines to cancer patients: personalized drug synergy prediction.

作者信息

Kuru Halil Ibrahim, Cicek A Ercument, Tastan Oznur

机构信息

Department of Computer Engineering, Bilkent University, Ankara 06800, Turkey.

Computational Biology Department, Carnegie Mellon University, Pittsburgh 15213, United States.

出版信息

Bioinformatics. 2022 Jan 1;40(5). doi: 10.1093/bioinformatics/btae134.

Abstract

MOTIVATION

Combination drug therapies are effective treatments for cancer. However, the genetic heterogeneity of the patients and exponentially large space of drug pairings pose significant challenges for finding the right combination for a specific patient. Current in silico prediction methods can be instrumental in reducing the vast number of candidate drug combinations. However, existing powerful methods are trained with cancer cell line gene expression data, which limits their applicability in clinical settings. While synergy measurements on cell line models are available at large scale, patient-derived samples are too few to train a complex model. On the other hand, patient-specific single-drug response data are relatively more available.

RESULTS

In this work, we propose a deep learning framework, Personalized Deep Synergy Predictor (PDSP), that enables us to use the patient-specific single drug response data for customizing patient drug synergy predictions. PDSP is first trained to learn synergy scores of drug pairs and their single drug responses for a given cell line using drug structures and large scale cell line gene expression data. Then, the model is fine-tuned for patients with their patient gene expression data and associated single drug response measured on the patient ex vivo samples. In this study, we evaluate PDSP on data from three leukemia patients and observe that it improves the prediction accuracy by 27% compared to models trained on cancer cell line data.

AVAILABILITY AND IMPLEMENTATION

PDSP is available at https://github.com/hikuru/PDSP.

摘要

动机

联合药物疗法是治疗癌症的有效方法。然而,患者的基因异质性以及药物组合数量呈指数级增长,给为特定患者找到合适的组合带来了重大挑战。当前的计算机预测方法有助于减少大量候选药物组合。然而,现有的强大方法是通过癌细胞系基因表达数据进行训练的,这限制了它们在临床环境中的适用性。虽然大规模的细胞系模型协同作用测量数据是可用的,但患者来源的样本太少,无法训练复杂模型。另一方面,患者特异性的单药反应数据相对更容易获得。

结果

在这项工作中,我们提出了一个深度学习框架,个性化深度协同预测器(PDSP),它使我们能够使用患者特异性的单药反应数据来定制患者药物协同作用预测。首先,使用药物结构和大规模细胞系基因表达数据对PDSP进行训练,以学习给定细胞系中药物对的协同得分及其单药反应。然后,使用患者基因表达数据和在患者体外样本上测量的相关单药反应对模型进行微调。在本研究中,我们对来自三名白血病患者的数据评估了PDSP,观察到与基于癌细胞系数据训练的模型相比,它将预测准确率提高了27%。

可用性和实现

PDSP可在https://github.com/hikuru/PDSP上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1235/11215552/4f65aa1696a9/btae134f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验