Suppr超能文献

使用基于智能手机的和被动感知特征优化焦虑障碍心理治疗的结果:一项随机对照试验方案。

Optimizing Outcomes in Psychotherapy for Anxiety Disorders Using Smartphone-Based and Passive Sensing Features: Protocol for a Randomized Controlled Trial.

机构信息

Experimental Psychopathology and Psychotherapy, Department of Psychiatry and Psychology, University of Zurich, Zurich, Switzerland.

Psychiatric University Hospital Zurich, Zurich, Switzerland.

出版信息

JMIR Res Protoc. 2024 May 14;13:e42547. doi: 10.2196/42547.

Abstract

BACKGROUND

Psychotherapies, such as cognitive behavioral therapy (CBT), currently have the strongest evidence of durable symptom changes for most psychological disorders, such as anxiety disorders. Nevertheless, only about half of individuals treated with CBT benefit from it. Predictive algorithms, including digital assessments and passive sensing features, could better identify patients who would benefit from CBT, and thus, improve treatment choices.

OBJECTIVE

This study aims to establish predictive features that forecast responses to transdiagnostic CBT in anxiety disorders and to investigate key mechanisms underlying treatment responses.

METHODS

This study is a 2-armed randomized controlled clinical trial. We include patients with anxiety disorders who are randomized to either a transdiagnostic CBT group or a waitlist (referred to as WAIT). We index key features to predict responses prior to starting treatment using subjective self-report questionnaires, experimental tasks, biological samples, ecological momentary assessments, activity tracking, and smartphone-based passive sensing to derive a multimodal feature set for predictive modeling. Additional assessments take place weekly at mid- and posttreatment and at 6- and 12-month follow-ups to index anxiety and depression symptom severity. We aim to include 150 patients, randomized to CBT versus WAIT at a 3:1 ratio. The data set will be subject to full feature and important features selected by minimal redundancy and maximal relevance feature selection and then fed into machine leaning models, including eXtreme gradient boosting, pattern recognition network, and k-nearest neighbors to forecast treatment response. The performance of the developed models will be evaluated. In addition to predictive modeling, we will test specific mechanistic hypotheses (eg, association between self-efficacy, daily symptoms obtained using ecological momentary assessments, and treatment response) to elucidate mechanisms underlying treatment response.

RESULTS

The trial is now completed. It was approved by the Cantonal Ethics Committee, Zurich. The results will be disseminated through publications in scientific peer-reviewed journals and conference presentations.

CONCLUSIONS

The aim of this trial is to improve current CBT treatment by precise forecasting of treatment response and by understanding and potentially augmenting underpinning mechanisms and personalizing treatment.

TRIAL REGISTRATION

ClinicalTrials.gov NCT03945617; https://clinicaltrials.gov/ct2/show/results/NCT03945617.

INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/42547.

摘要

背景

心理疗法,如认知行为疗法(CBT),目前对大多数心理障碍(如焦虑障碍)有最强有力的证据表明可以持久地改变症状。然而,只有大约一半接受 CBT 治疗的人从中受益。预测算法,包括数字评估和被动感应功能,可以更好地识别出从 CBT 中受益的患者,从而改善治疗选择。

目的

本研究旨在建立预测特征,预测焦虑障碍中跨诊断 CBT 的反应,并探讨治疗反应的关键机制。

方法

这是一项 2 臂随机对照临床试验。我们纳入患有焦虑障碍的患者,将他们随机分配到跨诊断 CBT 组或候补名单(称为 WAIT)。我们在开始治疗前使用主观自我报告问卷、实验任务、生物样本、生态瞬时评估、活动跟踪和基于智能手机的被动感应索引关键特征,以得出用于预测建模的多模态特征集。在中期和治疗后、6 个月和 12 个月随访时进行额外评估,以评估焦虑和抑郁症状的严重程度。我们的目标是纳入 150 名患者,以 3:1 的比例随机分配至 CBT 与 WAIT。数据集将经过全特征和最小冗余和最大相关性特征选择选出的重要特征处理,然后输入机器学习模型,包括极端梯度提升、模式识别网络和 K 近邻,以预测治疗反应。将评估所开发模型的性能。除了预测建模之外,我们还将测试特定的机制假设(例如,自我效能感、通过生态瞬时评估获得的每日症状与治疗反应之间的关联),以阐明治疗反应的机制。

结果

该试验现已完成。它已获得苏黎世州伦理委员会的批准。结果将通过发表在科学同行评议期刊和会议报告中进行传播。

结论

该试验的目的是通过精确预测治疗反应、通过理解和潜在增强潜在机制以及个性化治疗来改善当前的 CBT 治疗。

试验注册

ClinicalTrials.gov NCT03945617;https://clinicaltrials.gov/ct2/show/results/NCT03945617。

国际注册报告标识符(IRRID):DERR1-10.2196/42547。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9867/11134235/708836ae0f55/resprot_v13i1e42547_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验