Suppr超能文献

乳腺癌基因表达特征:发展与临床意义——一篇叙述性综述

Breast cancer gene expression signatures: development and clinical significance-a narrative review.

作者信息

Li Siyan, Yu Xinmiao, Xu Yingying

机构信息

Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China.

出版信息

Transl Breast Cancer Res. 2022 Oct 27;4:7. doi: 10.21037/tbcr-22-39. eCollection 2023.

Abstract

BACKGROUND AND OBJECTIVE

Breast cancer gene expression signatures are developing rapidly and are expected to better understand the intrinsic features of the tumor, and also to optimize the treatment strategy in clinical practice. This review is to summarize the controversy and consensus in clinical practice of gene expression signatures, and to provide our perspective on these issues as well as recommendation for future direction.

METHODS

We reviewed English publications in PubMed related to breast cancer gene expression signatures from 2002 to 2022.

KEY CONTENT AND FINDINGS

Five mature commercial gene expression signatures: Oncotype, MammaPrint, Prosigna/PAM50, EndoPredict and Breast Cancer Index (BCI) are available to provide the prognostic and predictive assessment. Although they could help to evaluate the risk of recurrence and to predict the benefits of certain treatments, their applications remain challenging. Treatment decisions should be determined by a combination of related clinical pathological factors in clinical practice.

CONCLUSIONS

Gene expression signatures could assist in the determination of the adjuvant therapy of early-stage breast cancer. The prospective randomized clinical trials showed that chemotherapy may be exempted in low-risk patients. More sufficient data are expected for the application in radiotherapy, extended endocrine therapy, and neoadjuvant treatment. The treatment cannot be determined by a single factor but by comprehensive assessments of clinicopathological factors, test purpose, and cost-effectiveness. Patients will benefit from personalized treatments with the publication of further evidence.

摘要

背景与目的

乳腺癌基因表达特征正在迅速发展,有望更好地了解肿瘤的内在特征,并优化临床实践中的治疗策略。本综述旨在总结基因表达特征在临床实践中的争议与共识,并就这些问题提供我们的观点以及对未来方向的建议。

方法

我们检索了2002年至2022年期间PubMed上与乳腺癌基因表达特征相关的英文出版物。

关键内容与发现

有五种成熟的商业基因表达特征检测方法:Oncotype、MammaPrint、Prosigna/PAM50、EndoPredict和乳腺癌指数(BCI),可用于提供预后和预测评估。尽管它们有助于评估复发风险并预测某些治疗的益处,但其应用仍具有挑战性。在临床实践中,治疗决策应由相关临床病理因素综合决定。

结论

基因表达特征检测有助于早期乳腺癌辅助治疗的决策。前瞻性随机临床试验表明,低风险患者可能无需化疗。在放疗、延长内分泌治疗和新辅助治疗中的应用还需要更多充分的数据支持。治疗不能由单一因素决定,而应综合考虑临床病理因素、检测目的和成本效益。随着更多证据的公布,患者将从个性化治疗中受益。

相似文献

1
Breast cancer gene expression signatures: development and clinical significance-a narrative review.
Transl Breast Cancer Res. 2022 Oct 27;4:7. doi: 10.21037/tbcr-22-39. eCollection 2023.
5
Tailoring neoadjuvant treatment of HR-positive/HER2-negative breast cancers: Which role for gene expression assays?
Cancer Treat Rev. 2022 Nov;110:102454. doi: 10.1016/j.ctrv.2022.102454. Epub 2022 Aug 11.

引用本文的文献

本文引用的文献

1
Endocrine Therapy Response and 21-Gene Expression Assay for Therapy Guidance in HR+/HER2- Early Breast Cancer.
J Clin Oncol. 2022 Aug 10;40(23):2557-2567. doi: 10.1200/JCO.21.02759. Epub 2022 Apr 11.
2
Outcome of Patients With an Ultralow-Risk 70-Gene Signature in the MINDACT Trial.
J Clin Oncol. 2022 Apr 20;40(12):1335-1345. doi: 10.1200/JCO.21.02019. Epub 2022 Jan 21.
3
A review of prognostic and predictive biomarkers in breast cancer.
Clin Exp Med. 2023 Feb;23(1):1-16. doi: 10.1007/s10238-021-00781-1. Epub 2022 Jan 15.
4
21-Gene Assay to Inform Chemotherapy Benefit in Node-Positive Breast Cancer.
N Engl J Med. 2021 Dec 16;385(25):2336-2347. doi: 10.1056/NEJMoa2108873. Epub 2021 Dec 1.
5
The Role of Ki67 in Evaluating Neoadjuvant Endocrine Therapy of Hormone Receptor-Positive Breast Cancer.
Front Endocrinol (Lausanne). 2021 Nov 3;12:687244. doi: 10.3389/fendo.2021.687244. eCollection 2021.
9
Molecular Drivers of Onco DX, Prosigna, EndoPredict, and the Breast Cancer Index: A TransATAC Study.
J Clin Oncol. 2021 Jan 10;39(2):126-135. doi: 10.1200/JCO.20.00853. Epub 2020 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验