Suppr超能文献

适应性诱导肌肉而非棕色脂肪的非颤抖性产热可能有助于对抗肥胖。

Adaptive Induction of Nonshivering Thermogenesis in Muscle Rather Than Brown Fat Could Counteract Obesity.

机构信息

Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic.

出版信息

Physiol Res. 2024 Aug 30;73(S1):S279-S294. doi: 10.33549/physiolres.935361. Epub 2024 May 15.

Abstract

Warm-blooded animals such as birds and mammals are able to protect stable body temperature due to various thermogenic mechanisms. These processes can be facultative (occurring only under specific conditions, such as acute cold) and adaptive (adjusting their capacity according to long-term needs). They can represent a substantial part of overall energy expenditure and, therefore, affect energy balance. Classical mechanisms of facultative thermogenesis include shivering of skeletal muscles and (in mammals) non-shivering thermogenesis (NST) in brown adipose tissue (BAT), which depends on uncoupling protein 1 (UCP1). Existence of several alternative thermogenic mechanisms has been suggested. However, their relative contribution to overall heat production and the extent to which they are adaptive and facultative still needs to be better defined. Here we focus on comparison of NST in BAT with thermogenesis in skeletal muscles, including shivering and NST. We present indications that muscle NST may be adaptive but not facultative, unlike UCP1-dependent NST. Due to its slow regulation and low energy efficiency, reflecting in part the anatomical location, induction of muscle NST may counteract development of obesity more effectively than UCP1-dependent thermogenesis in BAT.

摘要

温血动物(如鸟类和哺乳动物)能够通过各种产热机制来保护稳定的体温。这些过程可以是随意的(仅在特定条件下发生,如急性寒冷)和适应性的(根据长期需求调整其能力)。它们可以代表总能量消耗的很大一部分,因此会影响能量平衡。随意产热的经典机制包括骨骼肌的颤抖和(哺乳动物中的)棕色脂肪组织(BAT)中的非颤抖产热(NST),这依赖于解偶联蛋白 1(UCP1)。已经提出了几种替代产热机制的存在。然而,它们对总热量产生的相对贡献以及它们的适应性和随意性程度仍需要更好地定义。在这里,我们专注于 BAT 中的 NST 与骨骼肌产热(包括颤抖和 NST)的比较。我们提出了这样的观点,即肌肉 NST 可能是适应性的,但不是随意的,这与 UCP1 依赖性的 NST 不同。由于其缓慢的调节和低能量效率,部分反映了其解剖位置,肌肉 NST 的诱导可能比 BAT 中 UCP1 依赖性产热更有效地对抗肥胖的发展。

相似文献

1
Adaptive Induction of Nonshivering Thermogenesis in Muscle Rather Than Brown Fat Could Counteract Obesity.
Physiol Res. 2024 Aug 30;73(S1):S279-S294. doi: 10.33549/physiolres.935361. Epub 2024 May 15.
5
The metabolically protective energy expenditure increase of -related insulin resistance is not explained by Ucp1-mediated thermogenesis.
Am J Physiol Endocrinol Metab. 2025 Jun 1;328(6):E743-E755. doi: 10.1152/ajpendo.00449.2024. Epub 2025 Mar 28.
6
Mitochondrial ATP-sensitive K channels (MitoK) regulate brown adipocyte differentiation and metabolism.
Am J Physiol Cell Physiol. 2025 Aug 1;329(2):C574-C584. doi: 10.1152/ajpcell.00070.2025. Epub 2025 Jul 11.
7
Ventromedial hypothalamic nucleus subset stimulates tissue thermogenesis via preoptic area outputs.
Mol Metab. 2024 Jun;84:101951. doi: 10.1016/j.molmet.2024.101951. Epub 2024 May 8.
8
Shivering, but not adipose tissue thermogenesis, increases as a function of mean skin temperature in cold-exposed men and women.
Cell Metab. 2025 Sep 2;37(9):1789-1805.e4. doi: 10.1016/j.cmet.2025.06.010. Epub 2025 Jul 16.
9
When size matters: energy allocation and thermogenic mechanisms in very small mammals, African pygmy mice.
J Exp Biol. 2025 Aug 15;228(16). doi: 10.1242/jeb.250373. Epub 2025 Aug 14.
10
Oxidative Phosphorylation in Uncoupled Mitochondria.
Bioessays. 2025 Sep;47(9):e70038. doi: 10.1002/bies.70038. Epub 2025 Jul 6.

引用本文的文献

本文引用的文献

1
Parallel control of cold-triggered adipocyte thermogenesis by UCP1 and CKB.
Cell Metab. 2024 Mar 5;36(3):526-540.e7. doi: 10.1016/j.cmet.2024.01.001. Epub 2024 Jan 24.
2
Leslie Paul Kozak, PhD (1940-2023).
Obesity (Silver Spring). 2023 Dec;31(12):2885-2886. doi: 10.1002/oby.23919. Epub 2023 Oct 4.
3
Promoting metabolic inefficiency for metabolic disease.
iScience. 2023 Sep 6;26(10):107843. doi: 10.1016/j.isci.2023.107843. eCollection 2023 Oct 20.
4
Brown adipose tissue: can it keep us slim? A discussion of the evidence for and against the existence of diet-induced thermogenesis in mice and men.
Philos Trans R Soc Lond B Biol Sci. 2023 Oct 23;378(1888):20220220. doi: 10.1098/rstb.2022.0220. Epub 2023 Sep 4.
5
Models of body weight and fatness regulation.
Philos Trans R Soc Lond B Biol Sci. 2023 Oct 23;378(1888):20220231. doi: 10.1098/rstb.2022.0231. Epub 2023 Sep 4.
6
Highly recruited brown adipose tissue does not in itself protect against obesity.
Mol Metab. 2023 Oct;76:101782. doi: 10.1016/j.molmet.2023.101782. Epub 2023 Jul 25.
7
Advances in understanding the energetics of muscle contraction.
J Biomech. 2023 Jul;156:111669. doi: 10.1016/j.jbiomech.2023.111669. Epub 2023 Jun 5.
9
ADRA1A-Gα signalling potentiates adipocyte thermogenesis through CKB and TNAP.
Nat Metab. 2022 Nov;4(11):1459-1473. doi: 10.1038/s42255-022-00667-w. Epub 2022 Nov 7.
10
Loss of UCP1 function augments recruitment of futile lipid cycling for thermogenesis in murine brown fat.
Mol Metab. 2022 Jul;61:101499. doi: 10.1016/j.molmet.2022.101499. Epub 2022 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验